Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Тепловой эффект реакции зависимость температурная

    В статье [17] описан этот прибор и указано, что для получения линейной зависимости разницы температур между двумя температурными датчиками сигнал электрического контура анализируется математически. Авторы записали результаты серии различных титрований, с использованием кислотно-основных, окислительно-вос становительных реакций и реакций осаждения. Их прибор сделан достаточно чувствительным для получения результатов, которые можно использовать при расчете теплот реакций изучаемых систем. Для калибровки прибора они подключили теплонагревательную спираль к сосуду с раствором пробы так, чтобы тепло, выделяемое в результате реакции, могло бы точно воспроизводиться электрически, в идентичной термической среде. Таким образом, полученный результат учитывал любое различие в эффектах перемешивания и термической проводимости раствора пробы и сравнительного раствора или сравнительной системы. [c.43]


    При ведении процессов без внешнего теплообмена выделяющееся или поглощающееся реакционное тепло изменяет тепловое состояние и температурный режим системы, чем влияет на скорость реагирования. Характер кривых скоростей и распределения температур здесь находится в прямой зависимости от кинетических и тепловых особенностей проводимых реакций, как-то вида функции кинетических графиков, численного значения кажущейся.энергии активации или температурного коэфициента, величины и знака теплового эффекта процесса и теплоемкости реагирующей смеси. Последние две величины определяют суммарный перепад температур в адиабатических условиях. [c.98]

    Что касается химических превращений, то они, как известно, всегда сопровождаются выделением или поглощением тепла — так называемыми тепловыми эффектами, которые иногда существенно деформируют температурную зависимость теплоемкости процессы, сопровождающиеся поглощением тепла (эндотермическим эффектом), повышают эффективную теплоемкость системы, а экзотермические процессы, протекающие с выделением тепла, снижают ее. Если, приведя систему к некоторой температуре Т, подвергнуть ее достаточно продолжительному выдерживанию при этой температуре, то, по мере того как система будет переходить в новое равновесное состояние, теплоемкость ее будет изменяться (снижаться в случае эндотермических и повышаться в случае экзотермических реакций), стремясь к некоторому значению, которое можно было бы условно назвать равновесной теплоемкостью системы при температуре Т. Поскольку, однако, в литературе по теплофизике твердых горючих ископаемых за этой величиной прочно закрепилось название истинная теплоемкость, в дальнейшем изложении мы сохраним этот термин, подразумевая под ним теплоемкость системы, приведенной в равновесное состояние путем длительной изотермической выдержки при данной температуре. Во избежание путаницы термин истинная теплоемкость в уравнении (1.2) заменен термином теплоемкость . [c.8]

    Следует отметить, что пар, вводимый в окисляемое сырье, эффективно и с малой инерцией влияет на изменение температуры процессов в обратно пропорциональной зависимости от количества пара. Это позволило изменением количества пара, вводимого в сырье, легко регулировать температурный режим реакции окисления до 140°, почти не прибегая к наружному орошению водой стенок реактора, и поддерживать колебания температуры в пределах 3°. Описанное явление не может быть объяснено только эффектом съема тепла реакции за счет влажности пара, ввиду относительно малой ее величины по сравнению с общим ко,личеством выделяющегося тепла, и, повидимому, вызывается изменением общего характера кинетики процесса. [c.193]


    Для уравнения диффузии, входящего в систему уравнений, описывающих процесс горения, на плазменной модели не будет аналога. Для сохранения общности процессов и возможности приближенного моделирования следует обеспечить такой характер зависимости локального тока от сопротивления, который имитировал бы в конечном счете эффект выгорания горючей смеси. Иначе говоря, следует обеспечить температурную зависимость джоулева тепла, выделяющегося в плазме, аналогичную зависимости скорости тепловыделения при реакции от температуры. [c.175]

    В теплообменных конструкциях реакторов отвод или подвод тепла производится в количествах, не равных и обычно не пропорциональных тепловому эффекту реакции, в результате чего в них наблюдаются известные колебания температур. Практические примеры температурных кривых приводятся на фиг. 34. В отличие от адиабатических условий, а также политропических многоступенчатых схем в системах с непрерывным теплообменом имеется двоякая неравномерность температур, а именно как в ранее рассмотренных схемах, по пути следования реагирующих смесей и, кроме этого, по поперечному сечению аппаратов в направлении от оси потока к стенкам теплообменных поверхностей. Численные значения радиальных перепадов температур находятся в прямой зависимости от толщины слоя ката-лизатооа между поверхностями теплообмена, общих условий теплопередачи и величин выделений или поглощений тепла в единице  [c.120]

    Сама по себе идея термометрического метода чрезвычайно проста. Для ее практического осуществления в реакционный сосуд с двумя стенками (типа сосуда Дюара) помещают анализируемую жидкость (либо раствор анализируемого продукта в подходящем растворителе), отмечают начальную температуру и быстро вносят избыток реактива. После полного окончания реакции отмечают максимальное изменение температуры раствора. По другому варианту в реакционный сосуд вначале вносят избыток реактива, затем анализируемую пробу. Оба варианта не имеют принципиальных различий. По величине температурного скачка в идеальном случае можно рассчитать количество прореагировавшей воды, используя табличные значения тепловых эффектов реакций, объема и концентрации компонентов и других показателей. Однако этот вариант практически не используют уже по той причине, что зависимость между градиентом температуры и содержанием воды не является в общем случае прямо пропорциональной, а носит более слоншый характер в ходе основной реакции возможно дополнительное выделение (поглощение) тепла при смешении пробы и реактива вследствие протекания неконтролируемых побочных реакций с примесями и т. д. Кроме того, несмотря на все предостороншости, всегда происходит частичный теплообмен с окружающей средой, который трудно учесть при математических расчетах. [c.82]

    До сих пор при определении условий проведения процессов в реакторах влияние температуры не учитывалось, т. е. исследовались процессы в изотермических условиях при Т = onst. Между тем в большинстве случаев температура в процессе изменяется и оказывает существенное влияние на кинетику, статику и селективность химических процессов. Поэтому в большинстве практических случаев в реакторе создают определенный температурный режим, обеспечивающий наиболее высокую эффективность процес са. В зависимости от теплового эффекта протекающих реакций, а также от оптимального температурного режима, который необходимо поддерживать в реакторе, от реакционной смеси либо отводят тепло, либо к ней подводят тепло, или же температурный режим в реакторе сохраняют таким, каким он самопроизвольно устанавливается в соответствии с тепловым эффектом реакции. [c.140]

    Результаты измерений в виде локальных значений критерия Ыи,8с в зависимости от места на поверхности шара представлены на рис. IV. 22 в полярных координатах. Отложенные значения представляют собой среднее арифметическое 4—5 опытов, проведенных в одинаковых условиях. Графики указывают на большую неравномерность в значениях локальных коэффициентов массоотдачи по поверхности шара. В точках контакта эти значения минимальны, в наиболее свободно обдуваемых частях поверхности — максимальны. Суммирование полученных локальных коэффициентов по поверхности шара дает средний коэффициент массообмена, который удовлетворительно совпадает с расчетом по формуле (IV. 71) при Кеэ = 300 и 3000. Имеющиеся данные по локальным коэффициентам тепло- и массообмена можно использовать при рассмотрении процессов горения в слое топлива, экзотермической реакции на твердом катализаторе с большим тепловым эффектом. Области конта11-тов между зернами с пониженными значениями коэффициентов переноса представляют собой очаги процесса на верхнем температурном режиме и, по-видимому, повышают устойчивость процесса в плотном зернистом слое. Неравномерность локальных коэффициентов переноса должна влиять на процессы сорбции, [c.166]


    Прп обосновании вида топлива для топочной камеры была показана целесообразность сжигания в ней части кокса, подвергаемого облагораживанию, В зависимости от гидродинамических и температурных условий работы топочной камеры в продуктах сгорания кокса в широких пределах может изменяться соотношение окислов углерода СО СОг, а следовательно, и тепловой эффект процесса горетгия Qp. Известно, что Qp резекции С+О2— СОг составляет 8200 ккал/кг углерода, а реакции С- -1/202—>-00 — всего 2350 ккал/кг. Поэтому степень полноты сгорания топлива (т. е. максимального использования потенциального тепла сжигаемого кокса) и утилизации физического и химического тепла дымовых газов обусловливает технико-экономические показатели облагораживания коксов. Степень использования потенциального тепла сжигаемого кокса зависит, главным образом, от природы исходного кокса, содержания в нем зольных компонентов и серы, а также от условий облагораживания. Ранее было показано, что температура в зоне реакции при облагораживания малосернистых и сернистых коксов существенно различается. Поэтому и глубина проте- [c.237]

    На установках каталатаческого риформинга применяют реакторы с неподвижным или движущимся катализатором. Первые представляют собой адиабатические аппараты. В зависимости от направления движения обрабатываемой среды они подразделяются на реакторы с радиальным движением от периферии к центру (рис. 56) и аксиальным (нисходящим или восходящим потоком). В реакторах риформинга процесс проходит при значительных отрицательных тепловых эффектах, что вызывает необходимость непрерывного подвода тепла в зону реакции и создания каскада аппаратов со ступенчатым регулированием температурного режима. Разделение одного общего реакционного объема на несколько объемов в последовательно соединенных отдельных адиабатических реакторах с промежуточным подводом тепла в реакционные зоны от трубчатой нагревательной печи позволяет уменьшить перепад температур по высоте реакционного объема в каждом аппарате до невысоких значений (15 — 50 °С). Реакторы каталитического риформинга с неподвижным слоем катализатора рассчитаны на рабочее давление 1,5 — 4,0 МПа. [c.142]

    Наиболее реальным из всех термодинамических характеристик процессов деструкции является экспериментальное определение энталь-пийного фактора — теплового эффекта брутто-реакций. С этой целью может быть использован дифференциально-термический анализ. Дпя формальной оценки рассмотрим термограмму спекающегося угля (рис. 53), на которой имеется ряд характерных пиков, отвечающих тем или иным процессам, протек 1ющим при термической обработке угпей. Эндотермический пик в области 100-120°С обусловлен расходом теплоты на испарение воды, поэтому имеется прямая зависимость между глубиной этого пика и содержанием влаги в угле. Обычно термограммы углей низких стадий зрелости имеют более глубокий пик сушки по сравнению с термограммами угпей более высоких стадий зрелости. После завершения процесса испарения влаги из угля приток тепла к спаю термопары, помещенной в угольную загрузку, увеличивается по сравнению с эталоном и температура в обеих камерах тигля начинает выравниваться. Результатом этого является подъем дифференциальной кривой до температур 270—280°С. В зтой температурной области процесс термической деструкции имеет явный эндотермический характер, который изменяет ход кривой, в результате чего на ней образуется перегиб, принимаемый за экзотермический максимум. [c.131]


Смотреть страницы где упоминается термин Тепловой эффект реакции зависимость температурная: [c.237]    [c.77]    [c.143]    [c.237]   
Физическая и коллоидная химия (1960) -- [ c.76 ]




ПОИСК





Смотрите так же термины и статьи:

Тепловой эффект реакции

Эффект тепловой

Эффект тепловой, Тепловой эффект



© 2025 chem21.info Реклама на сайте