Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Трипсин расщепление цепи инсулина

    Действие некоторых протеолитических ферментов на окисленную В-цепь бычьего инсулина показано на рис. 6.2. Расщепление ферментами пепсином, химотрипсином или трипсином носит ограниченный характер и относительно специфично по сравнению с фактически беспорядочным частичным кислотным гидролизом. [c.179]

    Расщепление полипептидной цепи на фрагменты под действием протеолитических ферментов. Трипсин и химотрипсин-это специфические ферменты, катализирующие гидролитическое расщепление полипептидов в определенных местах их цепи (табл. 6-6). Ниже приведена последовательность В-цепи полипептидного гормона инсулина. Учтите, что цистиновый поперечный мостик между А- и В-цепями уже разорван под действием надмуравьиной кислоты (см. рис. 6-12). [c.162]


    В результате ферментативного воздействия, определяли последовательно после каждого отщепления Ы-концевого остатка по методу Эдмана (см. гл. 6). При изучении гемоглобина (Брауницер был удачно применен последовательный гидролиз белка разными про-теолитическими ферментами. В этом случае на белок действовали трипсином, а затем полученные пептиды гидролизовали пепсином, специфичность которого значительно повышали, ограничивая время реакции. Методические трудности, связанные с фракционированием сложных гидролизатов и определением полной структурной формулы белка, были преодолены в результате упорного труда нескольких групп ученых. Мы теперь знаем полную аминокислотную последовательность инсулина, глюкагона, рибонуклеазы, гемоглобина, белка вируса табачной мозаики, а также кортикотропина и других пептидных гормонов приближаются к завершению работы по установлению строения папаина, лизоцима, химотрипсиногена, трипсииогена, цитохрома с успешно продвигается изучение некоторых других белков. Изучение последовательности аминокислот проводилось на частичных кислотных гидролизатах или на гидролизатах, полученных при действии различных протеолитических ферментов. Чисто химические методы избирательного расщепления пептидных цепей не имели до сих пор значительного успеха, и эта область остается еще нерешенной задачей пептидно химии. [c.117]

    Многие полипептиды и белки синтезируются в виде цепей, имеющих большее число аминокислотных остатков, чем конечные функционально-активные структуры, присутствующие в клетке или секретируемые в кровь и другие жидкости организма. Так называемый процессинг этого предшественника с образованием более короткого белка осуществляется с участием ряда протеолитических ферментов. Здесь будет приведено лишь несколько примеров таких превращений, более подробная информация представлена в последующих главах. Один из примеров зимогенов (неактивных предшественников протеолитических ферментов) —трипсиноген, который при гидролизе одной пептидной связи превращается в активный фермент — трипсин (гл. 8). Фибриноген представляет собой растворимый белок плазмы крови, превращающийся в результате протеолиза в нерастворимый фибрин кровяных сгустков, предохраняющих организм от больших потерь крови при поражении кровеносных сосудов (гл. 29). Проинсулин, состоящий из одной полипептидной цепи с внутримолекулярными дисульфидными мостиками, в результате протеолиза дает активный инсулин, состоящий из двух пептидных цепей и образующийся за счет выщеплепия внутреннего пептидного сегмента из полипептидной цепи предшественника (гл. 46). Наконец, состоящий из трех цепей нерастворимый фибриллярный белок, коллаген, образуется в результате протеолитического расщепления предшественников, имеющих более длинные аминокислотные последовательности (с дополнительными пептидными сегментами в NH2- и СООН-концевых частях), чем цепи коллагена (гл. 38). Эти примеры иллюстрируют также возможные пути участия протеаз в контроле биологических процессов. [c.200]


    Полусинтез как способ получения соединений пептидно-белко-вой природы можно проиллюстрировать на примере инсулина. В 1972 г. впервые было осуществлено превращение инсулина свиньи в инсулин человека (М. Руттенберг), Молекулы этих гормонов отличаются лишь одним аминокислотным остатком в положении В 30 в инсулине свиньи находится Ala, а в инсулине человека—Thr. Предложенная схема (рис. 80) включала синтез гексаметилового эфира инсулина свиньи (обработкой диазометаном), расщепление В-цепи трипсином по остатку Arg-22, блокирование Вос-группой N-концевых остатков А- и В-цепей полученного укороченного инсулина, затем конденсацию продукта с синтетическим фрагментом В 23 — 30 инсулина человека (D /HOSu методом) и, наконец, удаление всех защитных групп. После интенсивной очистки удалось выделить инсулин человека с выходом около 10%. [c.151]

    Комплексы сывороточных белков с другими веществами белковой природы могут быть также выделены с помощью гель-хроматографии, как это было уже показано на примере комплекса гемоглобин — гаптоглобин (фиг. 16) [49]. Еще проще количественно определить емкость гемоглобина (способность гемоглобина к комплексообразованию) на сефадексе G-100 [50]. Фракция макроглобулинов (выделение на сефадексе G-200), очевидно, содержит белок, связывающий трипсин [51, 52]. Активность при этом сохраняется лишь частично [51, 52]. Комплексы антиген — антитело часто выделяли на пористых гелях, а затем после разложения на составные части исследовали более подробно (см. литературу, приложение IX). В предыдущем разделе на примере инсулина были рассмотрены возможности изучения растворимых иммунокомплексов. Иммунологические методы в сочетании с гель-фильтрацией играют важную роль в исследовании строения Y-глобулинов. Среди работ на эту тему (см. литературу, приложение X) имеются блестящие исследования, посвященные восстановительному расщеплению и выделению L- и Н-цепей, их рекомбинации, ограниченному действию папаина и, наконец, иммунологическим свойствам интактного белка и его фрагментов. [c.218]

    Полипептидный гормон инсулин участвует в регуляции углеводного обмена. Молекула бычьего инсулина содержит 51 аминокислоту и состоит из двух цепей. Последнее подтвернедается присутствием двух N-концевых аминокислот — глицина и фенилаланина. Цепь с N-концевым глицином называется А-цепью и содержит 21 аминокислоту цепь с N-концевым фенилаланином называется В-цепью, и в состав ее входит 30 аминокислот. Сэнгер и его сотрудники окислили инсулин надмуравьиной кислотой и провели хроматографическое разделение двух цепей. После этого каждую цепь подвергли ферментативному и кислотному гидролизу. На фиг. 27 и 28 указаны главные пептиды, полученные при гидролизе каждой из цепей, и приведены полные структуры цепей, установленные на основе этих данных. Видно, что места, в которых трипсин, химотрипсин и пепсин расщепляют цепи, согласуются с тем, что мы знаем о специфичности этих ферментов в отношении синтетических соединений. Обнаружено также и несколько дополнительных мест расщепления, в частности при гидролизе, катализируемом пепсином. Особо следует обратить внимание на то, что перекрывающиеся пептиды, полученные при использовании разных гидролитических методов, дополняют друг друга и позволяют однозначно установить общую аминокислотную последовательность. Для каждого из главных пептидов, приведенных на фиг. 27 и 28, аминокислотная последовательность была определена путем неспецифического гидролиза кислотой, установления последовательности аминокислот в образовавшихся ди-, три- и тетрапептидах и объединения полученных данных в общую картину. Как указывалось выше, в настоящее [c.91]

    С-Концевые пептиды А-цепи инсулина, лизоцима, цитохрома с, трипсина выделяли после блокирования всех свободных карбоксильных групп глициламидом при помощи водорастворимого карбодиимида ( 1-этил-3 (3-диметиламинопропил) карбодиимид, ЭДК) и расщепления полипептидов трипсином [33]. Все триптические пептиды, за исключением блокированного С-концевого, содержали свободные карбоксильные группы и присоединялись к анионообменной смоле AG-1-X2 (фирма Biorad). Перед хроматографией гидролизат обрабатывали карбоксипептидазой В, так как положительно заряженные Arg-содержащие пептиды не связывались со смолой и элюировались вместе с С-концевым пептидом. Свободный Arg отделяли от С-концевого пептида гель-фильтрацией или катио- гообменной хроматографией. Несмотря на то что эта многостадийная методика представляется продолжительной, ее рекомендуют как простую и довольно быструю. [c.483]

    Для рещения этой задачи было необходимо заново подвергнуть всю полипептидную цепь рибонуклеазы ферментативному гидролизу, но уже с помощью другого фермента. Если вначале использовался трипсин, то далее расщепление проводилось химотрипсином. Получемые в ходе химотриптического гидролиза пёптиды выделяли в чистом виде и исследовали на чередование аминокислотных остатков. Цель этой гигантской работы состояла в получении нескольких серий пептидов, частично перекрывающих друг друга. Располагая такими сериями перекрывающихся пептидов, можно определить не только последовательность аминокислотных остатков в отдельных пептидах, но п места сшивок самих пептидов в единой полипептидной цепи.. Говоря иными словами, удается установить порядок чередования остатков в первичной цепи целого белка. Заметим при этом, что часто приходится прибегать к гидролизу цепи с помощью третьего (пепсин), а иногда и четвертого (папаин) фермента. Именно этим путем была расшифрована первичная структура А- и В-це-пей инсулина (рис. 13, 14), рибонуклеазы, цитохрома С и других белков. [c.86]


    Была исследована способность еще нескольких белков к образованию правильной структуры после восстановления дисульфидных связей. Для всех них кроме инсулина, явно выпадающего из общей картины, были получены сходные результаты. На рис. 1.11 показана структура инсулина она состоит из А-цепи, содержащей 21 остаток, и В-цепи, содержащей 30 остатков. А- и В-цепи соединены между собой двумя дисульфидными мостиками. Кроме того, в А-цепи имеется мостик между полуцистинами 6 и 11. При денатурации инсулина его цепи перепутываются, н гфи реокислении не удается получить достаточного количества нативного белка. Следует иметь в виду, однако, что in vivo инсулин синтезируется как белок-предщественник — проинсулин (см. рис. 1.11). Далее эта молекула подвергается ферментативному расщеплению, фрагмент из остатков с 31-го по 63-й удаляется, и получается функционально активный иноглин. При восстановлении и реокислении проинсулина иммунологическая активность, свойственная нативному белку, восстанавливается. Более того, обрабатывая такой проинсулин трипсином, можно получить биологически активный инсулин. Таким образом, дисульфидные связи самопроизвольно формируются в проинсулине и затем сохраняются в инсулине. Без них инсулин не способен принять нативную конформацию. Возникает естественный вопрос находится ли инсулин в термодинамически наиболее стабильной конформации, по крайней мере в отнощении расположения дисульфидных связей  [c.274]

    Почти все внутриклеточные белки — это линейные полипеп-тидные молекулы, многие же внеклеточные белки содержат ковалентные поперечные (—8—8—)-мостики, образованные ти-оловыми группами двух остатков цистеина. Эти мостики находятся либо в пределах одной цепи (и тогда в главной полипептидной цепи возникают петли), либо связывают разные цепи (рис. 1.1). В последнем случае из одноцепочечного предшественника в результате протеолитического расщепления ( )орми-руются многоцепочечные структуры. Примером такого рода может служить образование инсулина из проинсулина и химо-трипсина из химотрипсиногена. При восстановлении тиолами [c.14]


Смотреть страницы где упоминается термин Трипсин расщепление цепи инсулина: [c.42]    [c.104]    [c.410]   
Химия протеолиза Изд.2 (1991) -- [ c.160 ]




ПОИСК





Смотрите так же термины и статьи:

Инсулин

Инсулинома

Трипсин

цепи инсулина

цепи инсулина инсулина

цепи инсулина расщепление цепи инсулина



© 2025 chem21.info Реклама на сайте