Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пепсин, расщепление ферментам

    Влияние кислотности среды. Второй важнейший фактор, от которого зависит активность ферментов, — реакция среды. Каждый фермент наиболее активен в определенном интервале pH, известном под названием оптимума pH. Оптимумы pH отдельных ферментов резко различаются. Например, максимальная активность пепсина, катализирующего расщепление белка, наблюдается при pH 1,5—2,0, а аргиназы, которая вызывает расщепление аминокислоты аргинина, — при pH 9,5—9,9. С удалением от оптимального значения pH в кислую или щелочную сторону активность фермента ослабляется вначале медленно, а затем очень быстро, и часто такое инактивирование вскоре приобретает необратимый характер. На рисунке И схематически показано влияние pH среды на активность фермента амилазы, которая катализирует расщепление крахмала. [c.46]


    Действие некоторых протеолитических ферментов на окисленную В-цепь бычьего инсулина показано на рис. 6.2. Расщепление ферментами пепсином, химотрипсином или трипсином носит ограниченный характер и относительно специфично по сравнению с фактически беспорядочным частичным кислотным гидролизом. [c.179]

    При действии активного желудочного сока фибрин расщепляется до пептонов и жидкость приобретает способность давать биуретовую реакцию. После кипячения (разрушение фермента) или нейтрализации соляной кислоты желудочный сок теряет способность расщеплять фибрин, так как ни соляная кислота, ни пепсин порознь не производят расщепления белка. [c.186]

    Нативная рибонуклеаза не чувствительна к действию трипсина и химотрипсина. Поэтому сначала проводили окисление рибонуклеазы (остатки цистина при. этом окислялись до остатков цистеиновой кислоты) и окисленный препарат подвергали затем действию протеолитических ферментов. При помош,и хроматографии на дауэкс 50-Х-2 [82] из триптического гидролизата было выделено 15 пептидных фрагментов [82], а из гидролизата после действия химотрипсина — 32 фрагмента [83]. Для количественного определения аминокислотного состава выделенных пептидов и для достижения их чистоты необходимо использовать достаточное количество исходного материала (200 мг). Фракции, содержащие более одного компонента, подвергают повторному фракционированию в несколько измененных условиях. Расщепление с помощью пепсина [6], хотя оно и не столь селективно, позволяет, однако, получить другие пептиды, которые помогают воссоздать полную структуру рибонуклеазы. [c.415]

    Переваривание и всасывание белков. В слюне нет ферментов, расщепляющих белки, поэтому переваривание их начинается в полости желудка под влиянием желудочного сока. В состав желудочного сока входит фермент пепсин и соляная кислота. Железы желудка выделяют в желудочную полость неактивный пепсин — пепсиноген, который под влиянием соляной кислоты переходит в активный пепсин. Образующиеся небольшие количества пепсина катализируют переход в пепсин остальной части пепсиногена. Соляная кислота создает в желудке кислую среду, в которой погибают бактерии и микробы, попадающие в него с пищей. Кроме того, соляная кислота способствует набуханию белков, ускоряет их гидролиз. Расщепление белков под влиянием пепсина осуществляется главным образом до образования пептонов. Пептоны, полученные в результате переваривания различной пищи, отличаются по своему составу имеется мясной пептон, рыбный, яичный и т. д. [c.220]


    Пока не начнется секреция желудочного сока, пепсин (протеолитический фермент желудочного сока) находится в неактивной форме, называемой пепсиногеном. Его превращение в активную форму, т. е. в пепсин, происходит под влиянием кислоты, попадающей в желудок из секреторных клеток. Полагают, что превращение происходит в результате незначительного расщепления белковой молекулы пепсиногена. Возможно, что при этом обнажается активный центр, который до этого находился внутри молекулы. [c.366]

    Большинство химических реакций, протекающих в пищеварительной системе, в крови и в клетках человека и животных, является каталитическими реакциями. Они ускоряются ферментами. Все ферменты — белковые вещества. Так, слюна содержит фермент птиалин, который катализирует превращение крахмала в сахар. Расщепление белков в желудке катализируется ферментом пепсином. Ферменты — исключительно активные катализаторы их действие отличается высокой избирательностью. [c.142]

    Первая закономерность связана с применимостью правила Траубе к процессам адсорбции из растворов. Использование уравнения Лэнгмюра, допустимое для начальных участков изотерм, показывает во многих случаях увеличение К в 3—3,5 раза при удлинении цепи на одно звено. Адсорбционная способность возрастает в гомологическом ряду и конкурентная адсорбция идет в пользу адсорбента с большим молекулярным весом. Так, во многих ферментативных процессах (например, при расщеплении пептонов пепсином) продукты распада оказываются менее поверх-ностно-активными, чем исходные вещества и уступают место в поверхностном слое все новым и новым макромолекулам субстрата на поверхности фермента. [c.174]

    Следует учесть, что ферменты, как и любые катализаторы, в равной степени ускоряют как прямую, так и обратную реакции. Поэтому ферменты расщепления — гидролазы в то же время являются ферментами синтеза, ферменты окисления — ферментами восстановления и т. д. Некоторые ферменты, как, например, пепсин, трипсин, обладают автокаталитическими свойствами. Попадая на соответствующий белковый субстрат, они превращают его в фермент. Этот процесс, ведущий к размножению фермента, весьма напоминает процесс размножения вирусов— мельчайших возбудителей заболеваний растений и животных. Многие вирусы, подобно ферментам, получены в кристаллическом состоянии, как, например, вирус табачной мозаики с молекулярным весом 4-10 , вирус столбура томата с молекулярным весом 10 , вирус некроза табака (6 10 ), вирус желтой мозаики репы (5-10 ) и т. д. Диаметр наиболее мелких вирусов равен приблизительно 20 ммк, т. е. близок к величине наиболее крупных ферментов. Мелкие вирусы отличаются под электронным микроскопом гомогенностью внутреннего содержимого и полным единообразием размеров и формы. [c.253]

    Не вполне удачный термин, основанный на внешнем сходстве этого процесса с переводом белка в раствор, в результате расщепления его на пептоны под действием фермента — пепсина. Поэтому в современной литературе чаще применяют термин дезагрегация. [c.263]

    Так, если взять раствор белка в воде и коагулировать его определенным образам, получается начальная степень мутности прибавив затем в другую порцию раствора протеина фермент (например пепсин) и произведя по истечении некоторого времени и в атом растворе коагуляцию, сравнивают его при помощи особого прибора — нефелометра с первой коагулированной пробой. Ведя аналогично наблюдения над последующими пробами, подвергшимися различному по времени воздействию фермента, можно по изменении мутности проследить ход гидролитического расщепления протеина.  [c.19]

    Все упомянутые выше ферменты, производящие переваривание протеинов, принадлежат к классу гидролаз. Они катализируют гидролитические процессы—реакции распада молекулы вещества с присоединением воды. Как мы установили ранее, гидролитическое расщепление белковых веществ идет ступенями от белкового вещества через альбумозы и пептоны к полипептидам и от последних к аминокислотам. Каждой из этих гидролитических реакций соответствует свой катализатор — фермент. Все эти ферменты объединены в одну общую группу и носят название протеаз. Среди них различают собственно протеазы, к которым относится пепсин — фермент желудочного сока. Собственно протеазы, действуя на протеин, переводят его в альбумозы, пептоны и полипептиды. Кроме собственно протеаз различают пептидазы они разрушают полипептиды до аминокислот. Действие ферментов регулируется реакцией среды для каждой группы ферментов существуют оптимальные условия концентрации водородных ионов. [c.67]

    Протеиназы — протеолитические ферменты, катализирующие гидролитическое расщепление белков по пептидным связям (например, пепсин). [c.245]

    Белки, попадающие в организм в качестве продуктов питания, подвергаются гидролизу. Как уже отмечалось, они легко гидролизуются в кислой среде с образованием отдельных аминокислот. Расщепление белков в организме начинается в желудке под действием фермента пепсина и соляной кислоты. При этом белки превращаются в смеси различных полипептидов. Гидролиз в желудке - лишь одна из стадий переработки белков. Смесь пептидов поступает из желудка в двенадцатиперстную кишку (верхний отдел кишечника), а затем - в тонкий кишечник, где под действием специальных ферментов - пеп-сидаз - завершается гидролиз полипептидов до свободных аминокислот. Образовавшиеся таким образом аминокислоты всасываются из тонкого кишечника в кровеносную систему, чтобы принять участие в синтезе именно тех белков, которые в данный период развития необходимы живому организму. [c.523]


    Иногда второго расщепления полипептида на фрагменты оказывается недостаточно, чтобы найти перекрывающиеся участки для двух или более пептидов, полученных после первого расщепления. В этом случае применяется третий, а то и четвертый способ расщепления, что позволяет в конце концов получить набор пептидов, обеспечивающих перекрывание всех участков, необходимых для установления полной последовательности исходной цепи. При этом для расщепления полипептида можно использовать другие протеолитические ферменты, например химотрипсин или пепсин правда, эти ферменты расщепляют пептидные связи гораздо менее избирательно, чем трипсин (табл. 6-6). [c.152]

    Различают прежде всего химическую, или абсолютную, специфичность, когда каждый фермент действует на определенное химическое вещество. Например, фермент пепсин катализирует расщепление только белков, фермент дипептидаза— только дипептидов, каталаза действует лишь на перекись [c.49]

    Для определения аминокислотной последовательности в длинных поли-пептидных цепях требуется специфически расщепить полипептид, т. е. расщепить его в немногих определенных точках и получить фрагменты, содержащие по нескольку аминокислот. Очень важно, чтобы расщепление было строго специфичным, так как необходимо быть уверенным в том, что число образующихся индивидуальных пептидов невелико, а их количества достаточны для дальнейшего исследования. Специфичность расщепления обеспечивает также и воспроизводимость результатов. Для специфического расщепления пептидных цепей часто применяют протеолитические ферменты — трипсин, химотрипсин и пепсин. [c.90]

    Расщепление полипептидной цепи на фрагменты проводят обычно при помощи протеолитических ферментов, таких, как трипсин, химотрипсин или пепсин. Эти ферменты действуют на различные участки полипептидной цепи, так как имеют повышенное сродство к различным аминокислотным остаткам. Необходимо учитывать также соседние аминокислотные остатки, т. е. пространственное окружение атакуемой пептидной связи. Оказалось, что трипсин гидролизует только те пептидные связи, в образовании которых участвует карбоксильная группа лизина или аргинина, а химотрипсин гидролизует связи по фенилаланину, триптофану и тирозину Обычно протеолитические ферменты, гидролизующие полипептидные цепи, предварительно иммобилизуют на нерастворимых матрицах для более легкого отделения их от продуктов гидролиза. Далее определяют аминокислотные последовательности каждого полипептидного фрагмента. Для этого чаще всего используют метод Эдмана, заключающийся в анализе полипептида только с Ж-конца. Концевая аминокислота при взаимодействии с фенилизотиоцианатом в щелочной среде образует стойкое соединение, которое можно отщепить от полипептида без его деградации. Фенилтиогидантоиновое (ФТГ) производное аминокислоты идентифицируется хроматографическим методом. После идентификации концевого Ж-амино-кислотного остатка метка вводится в следующий аминокислотный остаток, [c.41]

    Активность различных ферментов, а также специфика происходящих в тканях биохимических процессов тесно связаны с определенными довольно узкими интервалами pH. Например, пепсин желудочного сока активен при pH = 1,5—2,0 содержащийся в слюне птиалин, ускоряющий процесс осахаривания крахмала, наиболее активен при pH = 6,7, т. е. почти в нейтральной среде. В зависимости от pH среды ферменты могут катализировать совершенно различные реакции. Так, тканевые катепсииы при реакции среды, близкой к нейтральной, катализируют синтез белка, а при кислой реакции его расщепление. При отклонении величины pH от оптимальных значений активность ферментов, как показывает опыт, сильно снижается нли даже вовсе прекращается, что в конечном итоге приводит организм к гибели. [c.205]

    Термин пептизация (пептинизация) возник по аналогии с процессом расщепления белка ферментом пепсином на пептоны. [c.115]

    Биосинтез И млекопитающих кодируется одним геном (у нек-рых видов-двумя), определяющим образование одноцепочечного крупного белка - предшественника проинсулина (мол. м. ок. 9000), из к-рого после ферментативного расщепления образуется гормон. В организме И. гидролизуется протеолитич ферментами (трипсином, химотрипсином, пепсином), тканевыми протеазами и пептидазами, а также ферментом печени инсулиназой. [c.242]

    Катаболизм белков у всех организмов начинается с их расщепления по пептидным связям протеолитич. ферментами. В желудочно-кишечном тракте животных белки гидролизуются трипсином, химотрипсином, пепсином и др. ментами до своб. аминокислот, к-рые всасываются стенками кишечника и попадают в кровоток. Часть аминокислот подвергается дезаминированию до оксокислот, претерпевающих дальнейшее расщепление, др. часть используется печенью или тканями организма для биосинтеза белков. У млекопитающих отщепляющийся от аминокислот аммиак превращ. в орнитиновом х икле в мочевину. Этот процесс осуществляется в печени. Образующаяся мочевина вместе с др. р-римыми продуктами О.в. выводится из кровотока почками. [c.315]

    Другие ферменты, например химотрипсин и пепсин (гл. 7, раздГ.2), менее избирательны, но все же их тоже можно использовать для расщепления пептидной цепи на фрагменты с последующим определением структуры этих фрагментов. Для установления полной аминокислотной последовательности белка нужно найти перекрывающиеся фрагменты, содержащие последовательности, в которые входят концы двух разных триптических фрагментов. Таким путем можно выстроить пептиды в том порядке, в котором они расположены в нативном белке. [c.167]

    К числу гидролаз относятся ацетилхолинэстераза нервных клеток (дополнение 7-Б) и большое число пищеварительных фермеитов. Среди последних наиболее изучены протеиназы и пептидазы. Пепсин, трипсин, химотрипсин и карбоксипептидаза являются высокоэффективными катализаторами расщепления белков. Все оии секретируются в виде неактивных проферментов (гл. 6, разд. Ж,2), или иначе, зимогенов [26]. После синтеза на рибосомах эндоплазматического ретикулума особых секреторных клеток проферменты упаковываются в виде зимогеновых гранул, которые затем мигрируют к поверхности клетки и секретируются в окружающую среду. Пепсиноген является компонентом желудочного сока, в то время как химотрипсиноген, трипсиноген и другие панкреатические проферменты через проток поджелудочной железы попадают в тонкую кишку. Достигнув места своего действия, зимогены превращаются в активные ферменты под действием молекулы другого фермента, отсекающей от предшественника фрагмент (иногда довольно большой) полипептидной цепи [25]. [c.104]

    Установлено [27], что частично очищенный папаин способен атаковать синтетические субстраты амидного и пептидного типа. Аналогичными свойствами обладает и кристаллический фермент [178], который вызывает расщепление, хотя и с весьма различными скоростями, всех синтетических субстратов для трипсина, пепсина, химотрипсина, карбоксипепти-дазы и пептидаз. Из известных в настоящее время субстратов папаина наиболее чувствительным оказался бензоил-/-арги-ниламид. Атака фермента иа фракцию А окисленного инсулина свидетельствует о широком спектре гидролитического действия, напоминающем действие пепсина, хотя степень разрыва различных связей этими ферментами весьма различна. [c.210]

    Из методов неспецифического ферментативного расщепления чаще всего применяется гидролиз пепсином, папаином, бактериальными или грибковыми протеазами. Все три типа ферментов дают гидролизаты, представляющие собой сложную смесь мелких пептидов. В связи с этим их лучше использовать на конечных этапах расщепления крупных пептидов, полученных методами специфического гидролиза. Общий обзор методов ферментативного гидролиза сделал Хилл [34] подробные сводки о действии пепсина, папаина и бактериальных протеаз опубликовали Бовей и Янари [2], Смит и Киммель [781 и Хагихара [28] соответственно. [c.35]

    Гидролазы. Ферменты этой группы играют особенно важную роль в пищеварении и в процессах пищевой технологии. К ним относится большая группа протеолитических ферментов, катализирующих гидролиз белков и пептидов. Большое значение в биохимии пищеварения принадлежит протеолитическим ферментам (пепсин, химиотрипсин, аминопептидаза, карбоксипептидаза и др.), осуществляющим деполимеризацию молекул белка по мере его движения по пищеварительному тракту. Протеолитиче-ские ферменты участвуют в процессах, происходящих при переработке мяса, в хлебопечении. С их помощью проводят умягчение мяса и кожи, их применяют при получении сыров. Действие протеаз очень избирательно. Одни протеазы разрушают пептидные связи внутри молекул белка — эндопептидазы и на конце ее молекулы (экзопептидазы), т. е. отщепляют аминокислоты с N- или С-конца, другие расщепляют пептидные связи только между отдельными аминокислотами. Так, трипсин разрушает пептидную связь между лизином (Лиз) или аргинином (Apr) и другими аминокислотами, пепсин — между аминокислотами с гидрофобными радикалами, например между валином (Вал) и лейцином (Лей). Фермент химотрипсин гидролизует пептидную связь между триптофаном, (см. схему) тирозином и другими аминокислотами. В самом общем виде схема расщепления пептидных связей в полипептидной цепи может быть представлена следующим образом  [c.23]

    Расщепление пищевых белков начинается с действия протеолитического фермента желудка — пепсина. Специализированные (периетальные) клетки эпителия желудка секретиру-ют соляную кислоту, создавая в желудке кислую среду (pH 1,5—2,0). Этот фактор имеет важное значение в переваривании белков денатурирует белки пищи, оказывает бактерицидное действие, убивая попадающие с пищей микроорганизмы, является инициирующим фактором активации пепсиногена и превращения его в активную форму. Пепсиноген превращается в пепсин после отщепления от него 42 аминокислотных остатков, вначале под действием соляной кислоты (медленно), а затем аутокатали- [c.362]

    Для формирования современных представлений о структуре белка существенное значение имели работы по расщеплению белковых веществ протеолитическими ферментами- Одним из первых их использует Г. Мейснер. В 1850 г. К. Леман предлагает называть пептонами продукты разложения белков пепсином. Изучая этот процесс, Ф. Хоппе-Зайлер и Ш. Вюрц в 70-х годах прошлого столетия пришли к важному выводу, что пептоны образуются в результате гидролиза белков ферментом. Они были весьма близки к правильному толкованию таких экспериментов с позиций структурной химии, но, к сожалению, последнего шага на пути к теории строения белка сделать не сумели. Очень близок к истине был и А. Я. Данилевский, который справедливо утверждал, что белки построены из аминокислот и имеют полимерную природу главной же структурной единицей он ошибочно считал биуретовую группировку RNH ONH OR  [c.26]

    Желудочный сок молодых млекопитающих содержит фермент ренин, или сиео-ротку, свертывающий казеин и нревращающш его в нерастворимый параказеин (иногда казеин называется казеиногеном, а параказеин —казеином). Ренин был получен в чистом кристаллическом виде. Одна часть ренина свертывает 10 частей казеина. Параказеин не следует путать со свободным казеином, осаждающимся кислотами из его кальциевой соли, содержащейся в молоке параказеин образуется в результате необратимой реакции и содержит все количество кальция. Параказеин (кальциевая соль) является основной составной частью сыра, содержащего также жир молока. Ренин четвертого желудка теленка был получен в кристаллическом состоянии. Ренин действует как протеолитический фермент и сходен в некотором отношении с пепсином, но он действует при оптимальном pH 3,7, тогда как пепсин нуждается в значительно более кислой среде. Наряду с осаждением параказеина происходит образование небольшого количества растворимого пептида, так называемой альбумозы сыворотки. Таким образом, свертывание состоит, вероятно, в гидролитическом расщеплении молекулы казеина, причем один из фрагментов становится при этом растворимым, а другой — нерастворимым. [c.452]

    Нуклеопротеиды, подобно белкам, подвергаются в желудочно-кишечном тракте расщеплению. В желудке под влиянием соляной кислоты и пепсина, а в кишечнике под влиянием трипсина нуклеопротеиды распадаются на белок и нуклеиновые кислоты. Далее белок под влиянием ферментов гидролизируется до аминокислот нуклеиновые кислоты подвергаются воздействию нуклеоти-даз или полинуклеотидаз и расщепляются до мононуклеотидов. Примером последних может служить аденозинмо-нофосфорная кислота (АМФ) и аденозинтрифосфорная кислота (АТФ)  [c.228]

    Известно несколько десятков ферментов этого типа, из которых наиболее хорошо изучены ферменты желудочного сока — пепсин, трипсин и химотрипсин, а также папаин, содержащийся в растениях. Все они получены в кристаллическом состоянии. Иногда пептидазами называют ферменты, участвующие в расщеплении пептидов, а ферменты, катализирующие распад белков, называют протеиназами. Однако установлено, что действие того или иного фермента зависит не от размера молекулы (белки или пептиды), а в основном от его специфичности. В частности, показано, что типичные протеиназы— папаин и пепсин—могут расщеплять не только белки, но и пептиды. С действием протеолитических ферментов подробнее познакомимся при изучении белкового обмена в растениях. [c.65]

    Каждый из этих ферментов атакует вполне определенные пептидные связи. Трипсин катализирует гидролиз пептидных связей, карбонильная группа которых принадлежит одной из основных аминокислот, обычно аргинину или лизину. Пепсин и химотрипсин предпочтительно катализируют гидролиз тех пептидных связей, в образовании которых участвуют ароматические аминокислоты, в частности триптофан, тирозин и фенилаланин. Среди протеолитических ферментов наиболее высокой специфичностью обладает трипсин поэтому именно он наиболее подходит для такого рода анализа. Ясно, однако, что при помощи только одного, пусть даже абсолютно специфичного, фермента невозможно определить полную последовательность аминокислот в полипептиде. Если, например, триптическое расщепление полипептида дало пять фрагментов (пептидов), в сумме соответствующих всей цепи, и если даже для каждого из них удалось установить аминокислотную последовательность, то это еще не все требуется узнать, в каком порядке эти пептиды располагались в нативном полипептиде. Чтобы узнать это, необходимо получить другие пептиды, которые перекрывались бы с первыми. Главное преимущество ферментативного гидролиза — специфичность реакции расщепления в отношении природы расщепляемых пептидных связей накладывает в то же время строгое ограничение на применимость этого метода. В идеале желательно было бы, например, иметь возможность расщеплять иногда те пептидные связи, которые в норме трипсином не атакуются, или, наоборот, предохранять от расщепления связи заведомо чувствительные. Недавно были предложены некоторые модификации методики, которые позволяют в какой-то мере решить эту задачу. Так, например, реакция е-аминогруппы лизина с этилтрифтортиоацетатом в слабо щелочном растворе дает блокированный по аминогруппе остаток, пептидная связь которого не атакуется трипсином [c.90]

    Полипептидный гормон инсулин участвует в регуляции углеводного обмена. Молекула бычьего инсулина содержит 51 аминокислоту и состоит из двух цепей. Последнее подтвернедается присутствием двух N-концевых аминокислот — глицина и фенилаланина. Цепь с N-концевым глицином называется А-цепью и содержит 21 аминокислоту цепь с N-концевым фенилаланином называется В-цепью, и в состав ее входит 30 аминокислот. Сэнгер и его сотрудники окислили инсулин надмуравьиной кислотой и провели хроматографическое разделение двух цепей. После этого каждую цепь подвергли ферментативному и кислотному гидролизу. На фиг. 27 и 28 указаны главные пептиды, полученные при гидролизе каждой из цепей, и приведены полные структуры цепей, установленные на основе этих данных. Видно, что места, в которых трипсин, химотрипсин и пепсин расщепляют цепи, согласуются с тем, что мы знаем о специфичности этих ферментов в отношении синтетических соединений. Обнаружено также и несколько дополнительных мест расщепления, в частности при гидролизе, катализируемом пепсином. Особо следует обратить внимание на то, что перекрывающиеся пептиды, полученные при использовании разных гидролитических методов, дополняют друг друга и позволяют однозначно установить общую аминокислотную последовательность. Для каждого из главных пептидов, приведенных на фиг. 27 и 28, аминокислотная последовательность была определена путем неспецифического гидролиза кислотой, установления последовательности аминокислот в образовавшихся ди-, три- и тетрапептидах и объединения полученных данных в общую картину. Как указывалось выше, в настоящее [c.91]


Смотреть страницы где упоминается термин Пепсин, расщепление ферментам: [c.180]    [c.508]    [c.398]    [c.337]    [c.104]    [c.113]    [c.196]    [c.615]    [c.62]    [c.35]    [c.48]   
Методы разложения в аналитической химии (1984) -- [ c.106 ]




ПОИСК





Смотрите так же термины и статьи:

Пепсин

Расщепление ферментами



© 2025 chem21.info Реклама на сайте