Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Зимогены

    Проферменты (или зимогены). Проферментами (или зимогенами) называют неактивную форму фермента. Механизм превращения неактивной формы в активную различен. Ферменты, у которых активная группа связана пара-лизатором (ингибитором), активируется при отщеплении его (например, неактивный пепсиноген или трипсиноген превращаются в активные пепсин и трипсин после отщепления от каждого из них ингибитора полипептидной природы). Ферменты, у которых неактивной является окисленная форма, [c.99]


    В результате действия протеиназ из зимогена освобон<даются амилазы, под действием пептидаз накапливаются аминокислоты, главным образом аспарагиновая и глюта.миновая. Активность протеаз (см. рис. 49) возрастает в процессе солодоращения симбатно увеличению активности амилаз. [c.131]

    Один из наиболее важных ферментов желудочного сока — энтерокиназа. Его единственная роль — превращение зимогена панкреатического сока, трипсиногена, в очень важный протеолитический фермент — трипсин. [c.367]

    Каталитическую активность а-химотрипсина нельзя приписать исключительно наличию системы переноса зарядов. Из рентгено структурных исследований следуют многие другие факторы, от ветственные за каталитический процесс. Было обнаружено де вять видов специфических ферментсубстратных взаимодействий которые повышают эффективность а-химотрипсина. Например стабилизация тетраэдрического интермедиата, а следовательно понижение энергетического барьера переходного состояния, со провождается образованием водородной связи между карбониль ной группой субстрата и амидным атомом Ser-195 и Gly-193 В химотрипсиногене эта водородная связь отсутствует. Действи тельно, уточнение структур химотрипсиногена и а-химотрипсина с помощью рентгеноструктурного анализа показывает различия в расположении каталитической триады в зимогене и ферменте. Это конформационное изменение в общей трехмерной структуре фермента, возможно, вызывает значительные изменения химических свойств каталитического центра, что может играть важную роль в увеличении ферментативной активности при активации зимогена. [c.221]

    Как уже упоминалось, существует значительная перекрестная специфичность для а-химотрипсина, папаина и субтилизииа. Результаты подобных исследований хиральной специфичности, видимо, прольют свет на новые аспекты эволюционной дивергенции протеаз млекопитающих, бактерий и животных. Кроме того, активация зимогена, как правило, — это промежуточный этап как в биосинтезе протеаз, так и в самых разнообразных биологических процессах, например коагуляция крови, комплементарные реакции, выработка гормонов, фибриполпз и т. д. Такой точный и ограниченный протеолиз ферментами с широкой первичной специфичностью также показывает решающую важность третичной структурной специфичности протеаз в их взаимодействиях с природными субстратами [107]. [c.238]

    Наиболее важная информация о строении молекулы химотрипсина (молекулярная масса 25 ООО) была получена с помощью рентгеност-зуктурных исследований последних лет, проведенных Блоу с сотр. 14, 17—19]. Как итог своих исследований авторы представили трехмерную модель молекулы химотрипсина (см. рис. 3). В согласии с ранними общими представлениями о строении белков было найдено, что все заряженные группы в молекуле этого фермента направлены в сторону водного растворителя (за исключением трех, которые выполняют специфические функции либо в механизме активации зимогена, либо в механизме действия активного центра). Особенности расположения аминокислотных остатков с гидрофобными боковыми цепями внутри белковой глобулы также согласуются с ранними представлениями о важной роли гидрофобных взаимодействий в стабилизации третичной структуры белков (см. гл. I). [c.127]


    Понижение активности амилаз при созревании зерна объясняется связыванием их с белками. В таком, зимогенном, состоянии амилазы нерастворимы и потому неактивны. Активность их восстанавливается после воздействия протеаз, освобождающих амилазы из зимогена. [c.130]

    Железо. Железо содержится в цитохромах, цитохром-оксидазе, пероксидазе, каталазе и других ферментах, участвующих в процессе дыхания. Оно участвует в работе других ферментов (зимогена-за, пирофосфатаза). [c.198]

    ПРОТРОМБИН, гликопротеин плазмы крови. Мол. м. ок. 70 ООО. Белковая часть молекулы состоит из одной полипептидной цепи. Известна первичная структура для П. быка и человека. (582 аминокислотных остатка). На М-конце П. находится 10 остатков -у-карбоксиглутаминовой к-ты, необходимых для активации П. в тромбин. Синтез этих к-т осуществляется в печени карбоксилированием остатков глутаминовых к-т и регулируется витамином К. Содержание П. в плазме крови здорового человека 0,007—0,017%. ПРОФЕРМЕНТЫ (преферменты, зимогены), неактивные предшественники ферментов, образующиеся в ходе биосинтеза последних. Превращаются в ферменты а результате т. н. ограниченного протеолиза (расщепления обычно одной пептидной связи). Из П. синтезируются мн. протеолитич. ферменты, а также фосфолипазы. Биол. назначение П.— предотвращение преждеврем. проявления ферментативной активности внутри клеток и тканей, в к-рых осуществляется биосинтез ферментов. [c.485]

    X.- фермент большинства позвоночных, синтезируется в поджелудочной железе в форме неактивного предшественника (профермента, или зимогена) химотрипсиногвна, к-рый в двенадцатиперстной кишке под действием трипсина подвергается протеолизу с образованием X. [c.263]

    К числу гидролаз относятся ацетилхолинэстераза нервных клеток (дополнение 7-Б) и большое число пищеварительных фермеитов. Среди последних наиболее изучены протеиназы и пептидазы. Пепсин, трипсин, химотрипсин и карбоксипептидаза являются высокоэффективными катализаторами расщепления белков. Все оии секретируются в виде неактивных проферментов (гл. 6, разд. Ж,2), или иначе, зимогенов [26]. После синтеза на рибосомах эндоплазматического ретикулума особых секреторных клеток проферменты упаковываются в виде зимогеновых гранул, которые затем мигрируют к поверхности клетки и секретируются в окружающую среду. Пепсиноген является компонентом желудочного сока, в то время как химотрипсиноген, трипсиноген и другие панкреатические проферменты через проток поджелудочной железы попадают в тонкую кишку. Достигнув места своего действия, зимогены превращаются в активные ферменты под действием молекулы другого фермента, отсекающей от предшественника фрагмент (иногда довольно большой) полипептидной цепи [25]. [c.104]

    При высоких значениях pH скорость действия химотрипсина падает, и характер рН-зависимости указывает на существование в активном центре группы с рЛ[а от 8 до 9. Это значение рКа может относиться к N-кoнцeвoй аминогруппе Ие-16. Аминогруппа Пе-16 участвует в образовании одной из связей, расщепляемых при превращении зимогена в активный фермент. Эта аминогруппа образует ионную связь (ионную пару) с остатком Азр-194 (рис. 7-2), который находится рядом с сери-ном активного центра. Возможно, ионная связь способствует поддержанию фермента в нужной для реакции конформации. Депротонирование при pH выше 8—9 должно вызывать инактивацию [39]. [c.112]

    В соке поджелудочной железы помимо трипсиногена и химотрипси-ногена содержатся другие зимогены, которые превращаются в ферменты, отщепляющие аминокислоты от концов пептидных цепей (экзопептидазы) и в отличие от эндопептидаз — трипсина н химотрипсина — не способные расщеплять пептидные связи, находящиеся внутри полипептидной цепи. Карбоксипептидазы атакуют только С-концевые группы, отщепляя последовательно по одной аминокислоте, что делает ее ценным [c.115]

    Активация химотрипсиногена А более сложна схема (6), структуры даны схематически и не отражают молекулярных конформаций . Процесс включает расщепление четырех связей — одной трипсином и трех автокаталитически химотрипсином и удаление двух дипептидов Ser-14-Arg-15 и Thr-147-Asn-148 из внутренней части одноцепочечного зимогена. Дисульфидные связи [c.551]

    На каждом из путей последовательно образующиеся ферменты активируют соответствующие зимогены, что приводит к превращению растворимого белка плазмы фибриногена в нерастворимый белок фибрин, который и образует сгусток. Это превращение катализируется протеолитическим ферментом тромбином. В нормальных условиях тромбина в крови нет, он образуется из своего активного зимогена —белка гшазмы протромбина. Этот процесс осуществляется протеолитическим ферментом, названным фактором Ха, который также в обычных условиях отсутствует в крови он образуется при кровопотере из своего зимогена (фактора X). Фактор Ха превращает протромбин в тромбин только в присутствии ионов Са и других факторов свертывания. [c.603]


    Предшественники (зимогены) — пепсиноген, трипсиноген и химо-трипсиноген получены в чистом виде. Активация заключается в удалении небольшого пептидного фрагмента и катализируется либо активной формой самого фермента, либо энтерокиназой, другим ферментом, имеющимся в пищеварительном тракте. При превращении трипсиноге-на в трипсин с N-конца белка отщепляются гексапептид вал— (асп)4 — лиз и N-концевой аминокислотой становится изолейцин (Нейрат , 1955). Активация других зимогенов более сложна. Ранние работы Бергмаина (1937) на простейших модельных пептидах показали, что ферменты избирательно расщепляют определенно пептидные связи. Пепсин, трипсин и химотрипсин известны как эндопептидазы, так как они расщепляют пептидные связи, расположенные внутри молекулы. Пепсин расщепляет амидные связи, образованные аминогруппами фенилаланина или тирозина химотрипсин расщепляет связи, образованные карбоксильными группами этих ароматических аминокислот. Трипсин расщепляет амидные связи, образованные карбоксильными группами основных аминокислот (лиз, арг). Эти протеолитические ферменты расщепляют также эфиры аналогичной структуры. Во всех случаях затрагиваются только пептиды, образованные -аминокислотами. Предположение Михаэлиса (1913), что реакции, катализируемые ферментами, проходят через стадию образования промежуточного фермент-субстратного комплекса, были подтверждены всеми последующими работами. С большой очевидностью показано, что каталитическая активность определяется небольшим участком фермента, так называемым его активным центром. [c.697]

    Все протеолитические ферменты синтезируются в виде неактивных предшественников, называемых зимогенами или проферментами, и таким образом клетки заш ищены от контакта с активной формой фермента и автолиза. Превращение зимогена в активный фермент происходит путем необратимой ковалентной модификации зимогена за счет локалшого протеолиза, т е. разрьша одной или нескольких пептидных связей и отщепления ограниченного числа аминокислотных остатков. Это вызывает конформационные изменения в полипептиде, достаточные для формирования пространственной структуры активного центра фермента. [c.362]

    В поджелудочной железе синтезируется ряд химотрипсинов (а-, Р-, я-хи-мотрипсины) из двух предшественников — химотрипсиногена А и химотрипсиногена В. Активируются зимогены в кишечнике под действием активного трипсина и химотрипсина. [c.363]

    Более или менее длинные цепи белков, как правило, формируют домены, представляющие собой свернутую в пространстве структуру, имитирующую маленькую белковую молекулу Доменам присущи функции связывания, и в ферментных белках активный центр располагается преимущественно на границе между двумя или большим числом доменов К настоящему времени установлено, что домены способны перемещаться друг относительно друга в процессе функционирования содержащей их молекулы В трипси-ногене домен из неупорядоченного состояния переходит в упорядоченное в ходе активации зимогена [c.70]

    Химотрипсин-ЭТО протеолитический фермент, секретируемый из поджелудочной железы в тонкий кишечник в виде неактивного предшественника, или зимогена, называемого химотрипсиногеном. Химотрипсиноген, представляющий собой полипептидную цепь из 245 аминокислотных остатков и содержащий пять дисульфидных связей, образованных пятью остатками цистина, активируется в тонком кишечнике под действием другого протеолитического фермента-трипсина. Трипсин гидролизует четыре пептидные связи и удаляет из молекулы химотрипсршогена два дипептида в положениях 14-15 и 147-148. В результате образуется активный химотрипсин, состоящий из трех полипептидных цепей, ковалентно связанных двумя дисульфидными мостиками, один из которых соединяет А- и В-цепи, а второй-В- и С-цепи, как показано на рис. 2. Для проявления активности химотрипсина необходимы остаток гистидина 57 и остаток аспа- [c.251]

    Деградация коротких пептидов в тонком кишечнике осуществляется другими пептидазами. К ним относится в первую очередь карбоксшепшидаза-цинксодержащий фермент (разд. 10.21), синтезируемый в поджелудочной железе в виде неактивного зимогена прокарбокстепти- [c.749]

    Известно редкое заболевание стеатор-рея (упорный понос), при котором ферменты кишечника не способны переваривать определенные водорастворимые белки зерна, в частности глиадин, повреждающий эпителиальные клетки кишечника. Понятно, что из пищи таких больных следует исключить зерновые продукты. Другим заболеванием, связанным с отклонением от нормы активности протеолитических ферментов пищеварительного тракта, является острый панкреатит. При этом заболевании, обусловленном нарушением процесса вьщеления сока поджелудочной железы в кишечник, предшественники протеолитических ферментов (зимогены) превращаются в соответствующие каталитически активные формы слишком рано, будучи еще внутри клеток поджелудочной железы. [c.750]

    Превращение химотрипсиноген А -> химотрипсин представляет собой сложный процесс, приводящий фактически к образованию семейства химо-трипсинов — а, б, я и т. д. Все эти реакции катализируются трипсином и химотрипсином. Поскольку молекулярный вес химотрипсина близок к 25 ООО, активация зимогена должна быть сопряжена с относительно небольшим укорочением полипептидной цепи. Общая схема активации химотрипсиногена А представлена на фиг. 124. Катализируемое трипсином расщепление одной пептидной связи между аргинином и изолейцином приводит к образованию я-химотрипсина. Последующий разрыв второй пептидной связи] с отщеплением дипептида сериларгинина дает б-химотрипсин. [c.427]

    Как и другие протеолитические ферменты, карбоксипептидаза А поступает в панкреатический сок в виде зимогена — прокарбоксипептидазы А. [c.429]

    Протоколлаген 2—642 Протолитическая реакция 2—479, 581 Протолитическая теория кислот и оснований — см. Кислоты и основания Протон 4—385 5—987 Протопектины 3—874 Протонорфирин 1—836 4—2 76 Прототропия 4—380 2—490 5—33 Протравители семян 4—388, 290 5 —610 Протромбин 5—287 Проферменты — с.м. Зимогены Профибринолизин 4—43 Процинилы 2 — 748 [c.577]

    ЗИМОГЕНЫ (проферменты) — неактивные предшественники ферментов, превращающиеся в активные ферменты в результате структурных изменений. 3. чаще всего встречаются среди протеиназ (пепсин, ренин, трипсин, химотрипсин и карбоксипептидаза А), гидролитически расщепляющих белковые вещества в пищеварительном тракте животных. Эти ферменты вырабатываются клетками слизистой желудка, кишечника или поджелудочной железой и выделяются в желудочно-кишечный тракт в виде 3. (пепсиногона, прореннина, трипсиногена, химотрип-синогена и прокарбоксипептидазы). Такой способ образования и выделения протеиназ является приспособлением, защищающим клетки и ткани организма от самопереваривания их ферментами, вырабатываемыми в этих клетках. [c.54]

    Зелинского — Стадникова реакция 105 Земли отбеливающие 106 Земляной воск — см. Озокерит Земная кора — см. Литосфера Зеркальная плоскость симметрии (в кри-сталлогр.) 848 Зеркально-поворотные оси симметрии (в кристаллогр.) 848 Зимаза 107 Зимогены 108 Зимозан 108 Зинина реакция 109 Змеевики (минералы) 1009. Зола 352 Золи 109 [c.529]


Смотреть страницы где упоминается термин Зимогены: [c.219]    [c.713]    [c.130]    [c.485]    [c.104]    [c.608]    [c.76]    [c.488]    [c.573]    [c.76]    [c.750]    [c.369]   
Органическая химия. Т.2 (1970) -- [ c.713 ]

Химический энциклопедический словарь (1983) -- [ c.485 ]

Биохимия Том 3 (1980) -- [ c.0 ]

Биологическая химия Изд.3 (1998) -- [ c.603 ]

Биохимия (2004) -- [ c.362 ]

Биоорганическая химия (1987) -- [ c.237 ]

Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.485 ]

Аффинная хроматография (1980) -- [ c.317 , c.325 ]

Молекулярная биология клетки Том5 (1987) -- [ c.150 ]

Основы биохимии Т 1,2,3 (1985) -- [ c.251 , c.748 , c.749 ]

Основы биологической химии (1970) -- [ c.424 , c.425 ]

Органическая химия Углубленный курс Том 2 (1966) -- [ c.697 ]

Химия биологически активных природных соединений (1976) -- [ c.394 ]

Краткая химическая энциклопедия Том 2 (1963) -- [ c.108 ]

Биология Том3 Изд3 (2004) -- [ c.0 ]

Биохимия Издание 2 (1962) -- [ c.175 ]

Современная генетика Т.3 (1988) -- [ c.28 ]

Молекулярная биология клетки Т.3 Изд.2 (1994) -- [ c.11 ]

Биохимия человека Т.2 (1993) -- [ c.93 , c.289 ]

Биохимия человека Том 2 (1993) -- [ c.93 , c.289 ]

Химия протеолиза Изд.2 (1991) -- [ c.37 , c.69 ]

Молекулярная биология клетки Т.3 Изд.2 (1994) -- [ c.11 ]




ПОИСК







© 2024 chem21.info Реклама на сайте