Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Липидные взаимодействие с белками

    Второй пример взаимосвязи - существование общих предшественников и промежуточных продуктов. Протекание самых разных реакций на этом пути включает и кооперативные, и сопряженные, и конкурентные взаимодействия. Примером может быть образование различных соединений углеводной и липидной природы на основе глицерина, а также аминокислот - аланина, серина - на основе триоз, образующихся во время гликолиза. Следует отметить, что наиболее важным промежуточным продуктом обмена веществ, участвующих во всех метаболических реакциях, является ацетил-КоА - ключевая молекула и связующее звено различных сторон обмена. Существенно и наличие однонаправленности потока веществ в сторону липогенеза от углеводов и белков через ацетил-КоА. Поскольку в организме человека не существует механизма превращения ацетил-КоА в трехуглеродное соединение, то [c.119]


    Флуоресцентные зонды и метки являются удобным инструментом для исследования биологических мембран и мембранных ферментов. Испо 1ьзование зондов разной природы, способных связываться с белками или встраиваться в различные области липидного бислоя, а также меток, ковалентно реагирующих с функциональными группами белков или липидов, позволяет получить ценную информацию о состоянии и подвижности белка в мембране, состоянии липидного матрикса, характере белок-белковых и белок-липидных взаимодействий. [c.365]

    Ионная связь может быть непосредственной или вовлекать двухвалентные катионы между аминокислотами, заряженными отрицательно, и анионными фосфолипидами (ФС, ФИ, ФГ). Взаимодействие такого типа (ионный мостик) было обнаружено между белком миелина и фосфолипидом ФИ [104], а также между ФС и водорастворимым белком пшеницы [33]. Было показано (хотя это нередко игнорируется в липидно-белковых взаимодействиях), что ионная связь может играть важную роль в образовании гидрофобных связей. Так, цитохром Ьб — белок эндоплазматического ретикулума не способен образовывать гидрофобные связи с алифатическими цепями фосфолипида ФС, тогда как они могут быть установлены с фосфолипидом ФХ [25]. Электростатическое отталкивание между белками и полярной частью фосфолипидов поэтому в состоянии воспрепятствовать последующему образованию гидрофобных связей. [c.311]

    Строение клеточной мембраны показано на рис. 45. Мембрана состоит из липидного бислоя /, полярные группы 2 которого обращены наружу (липиды — макромолекулы, образованные из молекул жирных кислот). На внешних поверхностях мембраны адсорбирован первичный слой 3 белковых молекул, взаимодействие которых друг с другом придает мембране механическую устойчивость и прочность. Мембраны пронизаны особыми липопротеиновыми (комплекс липидов и белков) каналами 4, при помощи которых, по-видимому, осуществляется селективный ионный транспорт. Раствор внутри клетки содержит относительно большие концентрации ионов К+ и низкие концент- [c.138]

    Главная трудность при построении молекулярной теории "мембранного транспорта и рецепции состоит в анализе динамического взаимодействия белков и липидов. Мембранные рецепторы— по-видимому, белки (родопсин в фоторецепторах),— связавшись с лигандом, меняют свою конформацию, что приводит к изменению глубины погружения и подвижности белков в липидном море . Причина кооперативности может лежать во взаимодействии плавающих белков при их столкновениях. Динамическая мозаичная модель может послужить основой молекулярной физики мембран. [c.340]


    Для изучения возможного связывания и влияния ГНР на конформационное состояние липидов мембран клеток в работе изучали взаимодействие ряда ГНР с липосомами, моделирующие мембраны, не содержащие в липидном бислое белков. [c.561]

    Не только цепи жирных кислот, но и полярные группы липидов характеризуют мембрану. При этом именно полярные головки могут резче различаться в индивидуальных биологических мембранах. Они могут быть более существенными для липид-белковых, чем для липид-липидных взаимодействий, и для нормального функционирования отдельные белки могут нуждаться в специфических липидных полярных группах. Это уже было показано в случае многих ферментов [7] (см. ниже). [c.73]

    Оптические методы позволяют получить информацию о механизме фотосинтеза, электронном транспорте, транспорте кислорода в тканях, транспорте ионов, взаимодействии веществ различной природы с мембранами, белок-липидных взаимодействиях и других процессах. Они основаны на присутствии в изучаемой системе эндогенных или экзогенных (вносимых в систему экспериментатором) хромофорных групп. К эндогенным хромофорам относятся порфирины, флавины каротиноиды, пиридиннуклеотиды, цитохромы, гемоглобин, миоглобин, которые поглощают свет в видимой области спектра. Акридины, нафталин-сульфонаты, цианины являются экзогенными хромофорами. К оптическим методам относят абсорбционную спектрофотомет-рию, люминесценцию, метод флуоресцентных зондов, а также круговой дихроизм, дисперсию оптического вращения. Последние наряду с ИК-спектроскопией и спектроскопией комбинационного рассеяния используются для определения содержания различных элементов вторичной структуры молекулы белка, позволяют изучать ее конформационные переходы. [c.208]

    Многие типы липопротеидов содержат слишком большое количество липидов для того, чтобы обеспечить непосредственное связывание всех неполярных областей липидных остатков с неполярными областями белка. В подобных случаях структура липопротеидов должна включать также липид-липидное взаимодействие [14]. [c.372]

    Развитие этого метода позволило изучать динамику мембранных белков, белок-белковые и белок-липидные взаимодействия в биологических мембранах. [c.281]

    В зависимости от степени гидрофобности, числа и локализации гидрофобных аминокислотных остатков в полипептидной цепи белки либо частично, либо целиком погружены в липидный слой мембран или пронизывают его насквозь. Наиболее слабо связаны с мембраной так называемые периферические белки, которые удерживаются в мембране за счет слабых, в основном неэлектростатических, взаимодействий. Белки, сильно связанные с липидами мембран и глубоко погруженные в липидный слой мембран, так называемые интегральные белки, составляют основную массу мембранных белков. Обычно полипептидные цепи этих белков включают большое число неполярных аминокислотных остатков. [c.7]

    Ассоциация каротиноидов с белками, в основном с образованием синих комплексов у морских беспозвоночных, — область, в которой можно ожидать прогресса уже в ближайшем будущем. Будучи интересными сами по себе, эти комплексы служат очень полезными моделями взаимодействия белка с небольшими липидными молекулами, и полученные при этом результаты будут представлять несомненную ценность для многих разделов бпохпмип. Микроокружение и белковые комплек- [c.88]

    Взаимодействие белков с липидными монослоями обнаруживается при включении в монослои радиоактивно меченных белков (альбумин, цитохром с). Электростатические взаимодействия между белками и монослоем проявляются в виде резкого изменения сорбции белков на заряженных монослоях при отклонении от изо-электрической точки белков. В опытах с фосфолипазами показано, что электростатические взаимодействия определяют начальные этапы взаимодействия фермент — липидный монослой. Начальные этапы существенно облегчают последующую правильную стереохимическую ориентацию компонентов фермент-субстратного комплекса. [c.59]

    Периферические белки мембран отличаются от интегральных меньшей глубиной проникновения в бислой и более слабыми бе-лок-липидными взаимодействиями. Интегральные белки, как следует уже из самого их названия, так тесно связаны с мембранным бислоем, что изменение состояния этих белков передается на окружающие их липиды. [c.21]

    Полная регуляция активности белков-ферментов липидами не может быть осуществлена только гидрофобными белок-липидными взаимодействиями. Во взаимодействии молекул белков и липидов помимо гидрофобных взаимодействий между ацильными остатками молекулы липида и неполярными группами белковой молекулы принимают участие и другие. Это ионные взаимодействия, водородные связи, связи с образованием мостиков через двухвалентные катионы и др. [c.255]

    Установлено, что синтез этих белков контролируется в большинстве случаев ядерными генами, экспрессия которых индуцируется во время низкотемпературного стресса и закаливания и определяется его условиями. Большинство изученных к настояш,ему времени стрессовых белков являются водорастворимыми и локализованы в цитоплазме, ядерном, митохондриальном и хлоропластном матриксах. Несколько меньше имеется данных о синтезе в этих условиях мембранных белков, хотя большая роль мембран в развитии холодостойкости растительных клеток очевидна и позволяет предполагать значительные изменения в мембранных белках при гипотермии. Имеющиеся в литературе данные о влиянии низкотемпературного стресса на мембраны касаются, в основном, липидной фазы мембран. Белок-липидные взаимодействия в мембранах во время низкотемпературного стресса таьсже относительно слабо изучены. [c.143]


    Вода тканей является не просто растворителем или инертным компонентом она выполняет существенную структурную и функциональную роль. Например, взаимодействие белков с водой обеспечивает их конформацию с преимущественным расположением гидрофильных групп на поверхности белковой глобулы, а гидрофобных — внутри. Еще большее значение имеет вода для структурной организации биологических мембран и их основы —двойного липидного слоя, в котором гидрофильные поверхности каждого монослоя взаимодействуют с водой, отграничивая от нее гидрофобное пространство внутри мембраны, между монослоями. [c.387]

    Этот аспект изучения взаимодействий между липидами и белками мало затрагивался в сфере технологии. Важное значение этих взаимодействий для структуры и функции клеточных мембран и плазматических липопротеинов послужило стимулом многочисленных исследовательских работ на модельных системах. Эти работы позволили приобрести хорошие общие знания о молекулярных ассоциациях. Таким образом, здесь приводятся последние сведения о видах взаимодействий между липидами и белками, полученные в результате модельных исследований. Большинство биологических систем находится в водных средах, и во многих технологических процессах вода наиболее часто используется в качестве растворителя. Кроме того, вследствие особой структуры липидов белки больше взаимодействуют с липидными фазами, чем с изолированными молекулами. Здесь будут показаны структура липидных фаз в гидратированной сре- [c.306]

    Наоборот, белки, взаимодействующие с липидами исключительно через посредство ионных связей, сильно увеличивают энтальпию перехода благодаря стабилизации липидного бимолекулярного слоя. Наконец, третья категория белков, которые соединены с мембранами преимущественно через ионные связи, но которые легко проникают через липидный бимолекулярный слой, заметно снижает энтальпию перехода. [c.312]

    Поскольку существует только один тип воды, но много типов молекул липидов, этот широкий спектр липидных молекул обеспечивает большое разнообразие специфических взаимодействий с мембранными белками. Роль индивидуальных классов липидов для данного мембранного процесса выясняют с помощью модельных экспериментов [705, 706]. В случае кальциевого насоса функционально активную мембранную систему можно воссоздать путем добавления к очищенному белку только фосфолипидов [701, 702]. [c.268]

    Для биологических процессов наиболее важны белки, которые образуют комплексы с двойными липидными слоями, сахаридами и нуклеиновыми кислотами. Некоторую информацию об этих белках можно получить из уже исследованных взаимодействий белок — лиганд. Для расширения наших представлений в этой области необходимы данные о трехмерных структурах таких комплексов. [c.272]

    Некоторые из этих путей включают реакции, сопровождающиеся выделением энергии, запасаемой в виде АТР, большая часть которой используется в дальнейшем для энергетического обеспечения восстановительных процессов биосинтеза. В ходе этих восстановительных процессов образуются менее реакционноспособные гидрофобные липидные групировки и боковые цепи аминокислот, которые так необходимы для сборки нерастворимых внутриклеточных структур. Структурная организация природных олигомерных белков, мембран, микротрубочек и волокон является результатом агрегации, обусловленной сочетанием гидрофобных взаимодействий, электростатических сил и водородных связей. Главный результат метаболизма состоит в синтезе сложных молекул, которые весьма специфическим образом самопроизвольно взаимодействуют друг с другом, образуя требуемые для организма структуры— богатые липидами цитоплазматические мембраны, регулирующие вместе с внедренными в них белками поступление веществ в клетки. [c.502]

    Спектроскопические методы, в частности ЭПР, ЯМР и флуоресцентный все чаще применяются для изучения липид-белковых взаимодействии в мембранах. Внутренние мембранные белки могут быть экстрагированы из мембраны с помощью органических растворителей или (лучше) детергентов и очищены. Неоднократно было успешно продемонстрировано, что для восстановления биологической функции белка его необходимо ввести в мембрану определенного липидного состава. [c.124]

    Для изучения липид-белковых взаимодействий в таких реконструированных системах был применен метод спектроскопии ЭПР [35]. Цитохромоксидаза была очищена и отделена от ассоциированного с нею липида экстракцией растворителем. Путем обратного титрования липидом, содержащим спин-меченный зонд (см. разд. 25.3.5), показано существование слоя липида, прочно связанного с белком (рис. 25.3.9). Кроме того продемонстрировано, что для проявления ферментной активности необходимо существование такого пограничного слоя, состоящего из 50 липидных молекул на молекулу цитохромоксидазы. [c.124]

    Целостная структура мембраны создается за счет гидрофобных и электростатических взаимодействий, а не за счет ковалентных связей между составляющими ее молекулами белков и липидов. Гидрофобный липидный бислой представляет естественную преграду для проникновения полярных молекул. Мембраны асимметричны по своему исходному строению, что [c.302]

    При переходе от молекулярных систем к надмолекулярным структурам живых клеток и организмов мы встречаемся со специфическими проблемами физики конденсированных сред. Биологические мембраны, сократительные системы, любые клеточные структуры имеют высоко специализированное гетерогенное строение. Во всех функциональных надмолекулярных структурах определяющую роль играют белки, взаимодействующие с другими органическими молекулами (например, с липидами в мембранах) и с различными ионами, начиная с малых ионов щелочных и щелочноземельных металлов. В гетерогенных надмолекулярных системах реализуется специальное динамическое поведение, ответственное в конечном счете за важнейшие явления жизнедеятельности. Это поведение определяется особым состоянием биологических надмолекулярных систем. Мембраны имеют жидкое или жидкокристаллическое строение, белки плавают в липидном море . Сократительные белковые системы, ответственные за превращение химической энергии (запасенной преимущественно в АТФ) в механическую работу, т. е. системы механохимические, построены из различных фибриллярных белков, взаимодействующих друг с другом. Естественно, что внутримолекулярная и молекулярная подвижность, т. е. конформацион-ные движения, играют главную роль в динамике надмолекулярных структур. В конечном счете электронно-конформационные или ионно-конформационные взаимодействия лежат в основе всей клеточной динамики. [c.611]

    Удобным объектом для изучения свойств мембранных ферментов является Са-АТФаза (КФ 3.6.1.38) СР скелетных мыщц кролика, поскольку содержание этого белка в легкой фракции мембран ретикулума достигает 80—90% выделяемые препараты СР стабильны при хранении и имеют постоянный белковый и фосфолипидный состав. Цель работы — знакомство с методическими подходами к изучению взаимодействия мембранных ферментов с субстратами и регуляторами, к анализу конформационной подвижности мембранных белков, а также характера и роли белок-липидных взаимодействий в биологических мембранах. [c.358]

    В 1971 г. Ф. Сенгер и Г. Николсон предложили жидкостно-мозаичную модель биомембран, согласно которой мембраны представляют собой жидкокристаллические структуры, в которых белки могут быть не только на поверхности мембран, но и пронизывать их насквозь. В этом случае основой мембраны является липидный бислой, в котором углеводородные цепи фосфолипидов находятся в жидкокристаллическом состоянии, и с этим бислоем связаны белки двух типов периферические и интегральнь1е. Первые - гидрофильные, связаны с мембранами водородными и ионными связями и могут быть легко отделены от липидов при промывании буфером, солевым раствором или при центрифугировании. Вторые белки - гидрофобные, находятся внутри мембраны и могут быть выделены только после разрушения липидного слоя детергентом (процесс солюбилизации мембран), например, додецилсульфатом натрия, ЭДТА, тритоном и др. Интегральные белки, как правило, амфипатические, т.е. своей гидрофобной частью они взаимодействуют с жирными кислотами, а гидрофильной частью - с клеточным содержимым. Интегральные белки часто являются гликопротеидами, которые синтезируются в аппарате Гольджи, глико-зилируются в мембране и содержат много гидрофобных АК и до 50% спиральных участков. Эти белки перемещаются внутри липидного бислоя со скоростью, сравнимой с перемещением в среде, имеющей вязкость жидкого масла ( море липидов с плавающими айсбергами белков ). [c.107]

    На первой стадии образование батородопсина происходит за времена порядка десятков пикосекунд, а каждая последующая в 10 —10 раз медленнее предыдущей. Согласно современным представлениям, изменения обусловлены стерической невозможностью для прямого а11-гра с-ретиналя поместиться на поверхности опсина. Лишь изогнутый 11-4<ис-ретиналь вписывается в белок. Поглощение кванта света приводит к фотоизомеризации и тем самым к напряженным структурам, а в конце концов — к расщеплению химической связи между белком и хромофором. Переход к батородопсину влечет за собой изомеризацию ретиналя с образованием почти аИ-граис-формы, но такой, которая еще не релаксировала к самой низкоэнергетической геометрии. Более сильно релаксировавший а11-гранс-изомер появляется на стадии люмиродопсина. На каждой стадии белковый скелет перегруппировывается заметно выраженные изменения, связанные одной или более углубленными внутрь карбоксильными группами, становятся видимыми в метародопсине I. Образование метародопсина И сопровождается депротонированием шиффова основания, а также существенными изменениями липидной структуры. Именно метародопсин II з Jпy кaeт следующий набор биохимических стадий, которые мы коротко рассмотрим. Изменения оптического поглощения, по-видимому, согласуются с представленной картиной. Понижение энергии возбужденного состояния вследствие взаимодействия ретиналя с опсином приводит к длинноволновому сдвигу соответствующей полосы поглощения, причем чем сильнее взаимо-дейс№ие, тем сильнее сдвиг. Когда последовательно образуют- [c.239]

    Хотя жидкомозаичная модель сейчас общепризнана, следует помнить, что она все же представляет собой упрощенное и схематичное отражение столь сложной и разносторонней системы, как биологическая мембрана. Одним из основных постулатов этой модели является предположение о свободном движении молекул белков и липидов в двумерной фазе липидного бислоя. Однако вскоре выяснилось, что не все белки и липиды способны к свободному перемещению, в некоторых случаях их подвижность сильно ограничена. Во многих мембранах интегральные белки находятся в фиксированных положениях за счет высокой концентрации белка, вследствие его агрегации, образования липидных доменов, а также в результате взаимодействия белков с цитоскелетом, образуемым внутренними структурами клетки. [c.585]

    В 1965 г. Полторак и Чухрай [1] предложили метод, предоставляющий большие возможности для изучения химических и структурных свойств липопротеидных мицелл и лишенный ряда из перечисленных недостатков. Смысл этого метода состоит в том, что сначала из неводного растворителя на специально подобранный носитель наносится липидный монослой с варьируемыми свойствами, а затем на полученном липидном монослое проводится адсорбция регулируемого количества белка из водного раствора. Путем соответствующего подбора полярности носителя и природы используемого растворителя липида производится необходимая ориентация молекул в липидных слоях. Изучение изотерм адсорбции липидов дает сведения о липид-липидных взаимодействиях, а исследование каталитической активности при разных заполнениях белкового слоя дает возможность изучать эффекты, связанные с воздействием липида на [c.283]

    По мере расшифровки структуры различных белков (особенно в последние годы) становилось все более очевидным, что глобулярные белки, как и миоглобин, сохраняют свою структуру преимущественно благодаря взаимодействию между гидрофобными остатками. Внутри молекулы белка боковые группы уложены исключительно компактно. Если где-нибудь в структуре остается свободное пространство, оно обычно заполняется водой [24, 25]. Например, плотность упаковки (отношение объема, ограниченного вандерваальсовой оболочкой, к полному объему) молекул лизоцима и рибонуклеазы составляет 0,75 для сравнения укажем, что для плотно упакованных сфер теоретическое значение плотности упаковки равно 0,74. Полярные группы обычно находятся на поверхности, но иногда бывают утоплены внутрь, образуя водородные связи с другими группами внутри молекулы белка. На отдельных участках поверхности встречаются и неполярные боковые цепи, которые в ряде случаев сгруппированы в гидрофобные кластеры. Последние могут обусловливать взаимодействие с другими белками или с липидными участками мембран. [c.96]

    В ТО-е гг. первым исследованием упаковки липидов вблизи мембранного белка в небольпаих временных интервалах (< 10 с) было определение подвижности спин-меченной жирной кислоты в реконструированной системе цитохромоксидаза — эндогенные митохондриальные фосфолипиды методом ЭПР. В дальнейшем подобные эксперименты проводились с использованием цито-хромоксидазы и цитохрома и липидных бислоев, содержаш их грамицидин А, а также мембраны микросом печени крысы, эритроцитов, вирусов Синдбис и везикулярного стоматита. Было показано, что значительная часть липидов в этих мембранах иммобилизована за счет белок-липидных взаимодействий. Количество иммобилизованных липидов при температурах 20—40 °С составляет примерно 0,2 мг на 1 мг белка (47 молекул фосфолипидов на белковый комплекс) цитохромоксидазы, что соответствует приблизительно одному слою липидов вокруг белковой глобулы. Примерно такое же количество (45—90) молекул иммобилизуется за счет взаимодействия с Са -АТФазой саркоплазматического ре-тикулума. Понижение температуры может приводить к возрастанию количества иммобилизованных липидов в 2—3 раза. [c.59]

    Противоречивые данные получены также при исследовании избирательности связывания белков с различными фосфолипидами. Так, селективность взаимодействия фосфолипидов, несущих определенные полярные группы, была выявлена для родопсина, На+, К -АТФазы из 8диа1из a antus, цитохром-с-оксидазы, Са +-АТФазы. Вместе с тем многочисленные эксперименты по реактивации выделенных мембранных ферментов путем добавления экзогенных липидов и детергентов показали, что в большинстве случаев не существует специфических белок-липидных взаимодействий, обеспечивающих ферментативную активность разные типы липидов могут одинаково влиять на функционирование мембраносвязанных белков. Несмотря на то, что взаимодействие липидов с интегральными белками носит в основном гидрофобный характер, электростатические силы связывания заряженной гидрофильной части белковой молекулы и полярных групп окружающих липидов могут существенно влиять на характер липидного микроокружения белка. Кроме того, для активирующего действия липидов по отношению к некоторым мембранным ферментам важны такие факторы, как степень подвижности ацильных цепей и способность липидов образовывать мицеллы. По-видимому, сродство разных липидных молекул к белкам мембраны определяется не спецификой белков, а спецификой липидных молекул. [c.60]

    Учитывая эти данные, можно констатировать, что ПФОЛ, индуцированное УФ-излучением в интервале длин волн 240— 390 нм, не приводит к фото деструкции мембранной АХЭ, а посредством изменения контролирующих конформацию фермента белок-белковых и белок-липидных взаимодействий способствует более эффективному протеканию каталитической реакции. На наш взгляд, интересным представляется тот факт, что облучение мембран эритроцитов длинноволновым УФ-светом индуцирует резкое снижение каталитической активности АХЭ. Хромофорами УФ-света в данных условиях эксперимента являются различные (восстановленные) пиридиннуклеотиды, флавины, железопорфирины. Итак, ингибирование мембранного фермента в указанном случае может быть обусловлено фотохимическими превращениями вышеназванных хромофоров УФ-излучения. Не исключена вероятность локализации этих акцепторов УФ-света на мембране в непосредственной близости к исследуемому белку. Вместе с тем учитывая то обстоятельство, что хромофорные группы мембран (порфирины, флавины, нуклеотиды) выступают в качестве сенсибилизаторов ПФОЛ, можно предположить, что в процессы модификации АХЭ вносят вклад преимущественно фотохимические превращения указанных компонентов биомембран, а также фотосенсибилизированное ими пероксидное окисление липидов. [c.151]

    Анализ белок-липидных взаимодействий в мембране позволяет выделить контакты четырех основных типов. Наиболее часто распространен случай, когда внедряющийся в бислой белок вызывает локальное возрастание упорядоченности аннулярного слоя так действуют пептидный ионофор — грамицидин, бактериородоп-син и многие другие интегральные мембранные белки. [c.22]

    Различные модификации флуоресцентной спектроскопии с успехом используют в биохимии мембран для характеристики белок-липидных взаимодействий и подвижности мембранных белков в процессе их функционирования. Один из примеров такого рода — расчет подвижности белковых молекул из величин поляризации флуоресценции. Для измерения используют флуорофоры с хорошим квантовым выходом, способные избирательно модифицировать химические группы белка (дансилхлорид, атакующий КНа-группы, или эритрозин, присоединяющийся к 5Н-группам белка). Поляризацию флуоресценции Р определяют (в стационарном режиме при непрерывном освещении образца) из уравнения [c.81]

    Вслед за подтверждением положения о том, что липидные слои пронизаны белком, была выдвинута мозаичная модель, которая явилась компромиссом между хмоделью сэндвича и моделью повторяющихся единиц. Согласно этой модели (рис. 9. л, м) мембраны построены из липопротеииовых протомеров, эквивалентных по форме и размеру и способных соединяться друг с др том, причем эти ассоциации..спонтанны и обратимы. Каждый протомер включает одну или несколько пептидных цепочек, связанных с липидами, и имеет дифференцированные области, через которые связывается с близлежащими протомерами как гетерологично, так и изологично. Мозаичная модель учитывает разнообразие белково-липидных взаимодействий и модифика- [c.80]

    После гипотезы Даниэлли и Дэвсона предложены разнообразные модели строения биомембран. Развитие представлений о строении биомембран изложено в ряде обзоров (см., например, [227, 228]). Наибольшую популярность в настоящее время получила мозаичная модель биологической мембраны [229], согласно которой функциональные белки погружены и диффундируют в жидкообразном липидном бислое. Белок погружен в бислой таким образом, что полярные и ионизованные группы взаимодействуют с водой, а гидрофобные части — с углеводородными цепями липидов. [c.167]

    В рассмотренных до сих пор примерах липид-белкового взаимодействия активность ферментов увеличивалась при увеличении текучести окружающего их бислоя. Однако было показапо [38], что активность фосфолипазы Аа, катализирующей гидролиз фосфолипидов, оптимальна во время фазового перехода фосфолипида. Этот результат можно понять, если принять во внимание особые свойства липидов на границе раздела упорядоченных и жидких доменов, существующих во время фазового перехода [39]. Эти данные позволяют предположить, что активность белков в мембранах зависит от наличия как пограничного слоя липидов, ассоциированных с белком, так и границы раздела фаз между различными липидными доменами. [c.125]

    Многие усилители взаимодействуют также с внутриклеточными белками, воздействуя на денатурацию альфа-кератина. Исключением является олеиновая тсислота, однако она более эффективна при добавлении полярного сорастворителя пропиленгликоля, который сам взаимодействует с белками. Липидный барьер ослабевает, содержащие белок клетки могут создавать дополнительное диффузионное сопротив-летгае. Таким образом, усилители, действующие и на липидные, и на белковые области, являются более эффективными. Межклеточный транспорт ЛВ может быть повышен в результате растворяющего действия усилителей на белковые спирали. [c.354]


Библиография для Липидные взаимодействие с белками: [c.299]   
Смотреть страницы где упоминается термин Липидные взаимодействие с белками: [c.26]    [c.61]    [c.418]    [c.7]    [c.57]    [c.400]    [c.284]    [c.556]   
Молекулярная биология клетки Том5 (1987) -- [ c.71 , c.76 ]




ПОИСК







© 2025 chem21.info Реклама на сайте