Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Эволюция структурных генов

    Специализация белков создает предпосылки для исследований на уровне организма. Согласно распространенной сейчас гипотезе в основе эволюции организма лежит, по-видимому, не эволюция структурных генов и соответствующих белков, а эволюция регуляторных генов [517]. Имеется много свидетельств тому, что адаптивная эволюция происходит прежде всего в результате изменений во взаимных отношениях структурных генов, а не в замещениях аминокислот в продуктах этих генов. В свете этой гипотезы увеличивается значение специализации белков для построения филогенетического дерева, поскольку предполагается, что положения аминокислот в полипептидной цепи являются признаками, не зависящими от эволюционных скачков. Таким образом, исследование специализации белка создает основу для более систематического изучения эволюции поведения и эволюции морфологии это особенно важно для таксонов, которые бедны сведениями об ископаемых вариантах. [c.211]


    Возможно и другое объяснение этого парадокса. Оно заключается в предположении, что эволюция всего организма определяется в основном изменениями не структурных генов, а регуляторных. Тогда скорость организменной эволюции не обязательно должна совпадать со скоростью эволюции структурных генов. Эта гипотеза подтверждается [c.240]

    Выявление некоторых общих тенденций в эволюции структурных генов еще не объясняет того, как изменяются гены. Для выяснения этого вопроса предприняты многочисленные исследования по сравнению белков, а затем и самих генов, кодирующих эти белки. [c.484]

    Мы рассмотрели точечные мутации структурных генов. Для онтогенеза и эволюции не менее, если не более существенны мутации регуляторных генов. [c.286]

    У эукариот некоторые структурные гены представлены в генотипе двумя или более тождественными копиями. Другие структурные гены произошли путем дупликаций от общего предкового гена, но в процессе эволюции накопили некоторые различия и в настоящее время кодируют несколько различные белки с различными функциями. Примерами могут служить гены семейств иммуноглобулинов и глобинов (гл. 16). [c.40]

    Степень генетической дифференциации между видами можно оценить либо прямым путем, исследуя нуклеотидные последовательности генов, либо косвенным образом, определяя аминокислотные последовательности белков, кодируемых структурными генами. Существуют и некоторые другие методы, позволяющие оценить накопившиеся в процессе эволюции генетические изменения гибридизация ДНК, электрофорез, иммунологический анализ. [c.220]

    Эволюция структурных и регуляторных генов [c.238]

    Роль генов-регуляторов в адаптивной эволюции остается одной из главных нерешенных проблем эволюционной генетики. Приведенные выше данные указывают на то, что изменения, происходящие в регуляторных генах, возможно, очень важны для адаптивной эволюции, т.е. для эволюции морфологии, поведения и механизмов репродуктивной изоляции. Более того, опыты, сравнительно недавно поставленные на бактериях, дрожжах и дрозофилах, показывают, что приспособление организма к новым условиям обитания часто обусловлено изменениями в регуляторных генах, хотя в дальнейшем могут возникать изменения и в структурных генах. Однако о механизмах действия генов-регуляторов у высших организмов в настоящее время мало что известно. [c.241]

    Ограниченность современных представлений о естественном отборе и нейтральных заменах при эволюции белков. Как уже отмечалось, большинство исследователей придерживаются мнения, что естественный отбор обусловил замену некоторых аминокислот в белках и существование некоторых систем генетического белкового полиморфизма, выявленных в популяции человека. С другой стороны, часть межвидовой изменчивости и изменчивости внутри популяции человека, вероятно, возникла в результате случайного дрейфа, при этом селективное преимущество или вредность могут быть сравнительно небольшими или даже полностью отсутствовать. Однако имеющиеся в настоящее время данные не позволяют ответить на вопрос о том, какая доля генетической изменчивости обусловлена отбором, а какая-случайными процессами. В этом контексте следует напомнить величину генетического полиморфизма в популяции людей геном человека, вероятно, содержит около 50000-100000 структурных генов [1943], кодирующих белки. Известно несколько сотен таких генов, причем до 30% из них могут быть полиморфными. [c.24]


    Сравнение путей биосинтеза основных низко молекулярных компонентов клетки, а также путей утилизации источников углерода и азота показывает, что они в основном одинаковы у большинства организмов. Матричные процессы репликация, транскрипция и трансляция — также сходны. Все это заставляет предполагать, что основная нагрузка в ходе эволюции падала на изменения не столько структурных генов, сколько регуляторных систем. К сожалению, знания о механизмах регуляции у эукариот еще недостаточны. Тем не менее уже можно отметить некоторые фундаментальные различия регуляции у про- и эукариот. При [c.493]

    Таким образом, мигрирующие элементы, перемещаясь по геному, действуют и как средство изменения экспрессии генов, и как средство эволюции структуры генома. Это происходит благодаря тому, что один и тот же мигрирующий элемент, локализованный в разных (негомологичных) частях генома, служит для рекомбинации, приводящей к хромосомным перестройкам и транспозициям генов (см. гл. 13). В то же время мобильные элементы могут играть роль мигрирующих промоторов, объединяя структурные гены и регуляторные элементы, настраивая их на общие сигналы регуляции. Таким образом, пути эволюции структуры и экспрессии генома оказываются объединенными. [c.494]

    Другая оговорка относительно вычисления цены генного замещения входит во все расчеты скорости эволюции сколько существует генов В своих рассуждениях я принял оценку 1,3-10 кодонов, основанную на общем весе ДНК сперматозоида человека. Однако действительно ли можно считать, что существует 10 млн. структурных генов, специфичных для ферментов и белков Чтобы не слишком отклоняться от реальности, укажем, что в исчерпывающем перечне, составленном Диксоном и Уэббом (1964) для позвоночных, насчитывается только 432 фермента однако в него включены только те ферменты, у которых измерена кинетика, так что ферменты. [c.225]

    Эволюция человека, по-видимому, зависела главным образом от изменений на уровне регуляторной ДНК, а не на уровне структурных генов [c.296]

    Наряду с совершенно очевидными медленными изменениями возможны и быстрые изменения. Это объясняется тем, что многие резкие структурные и функциональные изменения совершаются без участия структурных генов они определяются изменениями в регуляторной ДНК и даже внешними факторами, влияющими на Секрецию гормонов (см. гл. 21). Структурные гены, по-видимому, играют в эволюции скромную роль по сравнению с ролью нуклеотидных последовательностей регуляторных ДНК. [c.298]

    Некоторые из наиболее важных признаков, отличающих человека от человекообразных обезьян, отсутствуют у него при рождении. Эволюция человека, по-видимому, зависела главным образом от изменений в регуляторной ДНК, а не в структурных генах. [c.360]

    Не только виды, но даже роды и семейства могут возникать с помощью многих различных механизмов. Их диапазон простирается от изменений, присущих минералам, и физических факторов до изменений в регуляторных ДНК- Структурные гены, по-видимому, играют в эволюции весьма скромную роль. [c.360]

    Виды, роды и семейства могут появляться с помощью множества различных механизмов. Их диапазон простирается от модификаций минералов и изменений физических факторов до изменений, происходящих на уровне регуляторных ДНК. Структурные гены, по-видимому, играют в эволюции скромную роль [c.371]

    Если замены аминокислот, вставки н делеции представляются сравнительно небольшими структурными модификациями в ходе эволюции, то процесс слияния генов вызывает очень существенные изменения он приводит либо к объединению друг с другом разных полипептидных цепей, либо к дупликации данной цепи. [c.227]

    В процессе эволюции белков можно выделить тенденции к специализации и дифференциации. Специализированные белки выполняют одну и ту же функцию в разных организмах и могут использоваться для установления генеалогии организмов. Однако следует отметить, что специализация белков не направляет эволюцию организмов. Дифференциация белков — это процесс, ведущий к функциональному разнообразию гомологичных белков. Таким образом, исследование эволюции белков не только способствует проникновению в детали структурной организации белков, но также позволяет установить связи между белками, находящимися в совершенно различных частях метаболического пути. Таким образом, можно внести определенный порядок в огромный перечень существующих белков и вместе с тем выявить аспекты эволюции метаболических путей. Важным механизмом дифференциации белков является мультипликация и слияние генов. [c.242]

    Эволюция одинаковых генов внутри нолицистрона протекает далее с помощью случа11ных мутаций. Начальное подобие генов в нолицистроне, где каждый из них способен участвовать в создании одного и того же фермента, контролирующего единичное биохимическое преобразование, подготавливает в структурной генетической эволюции соседство генов, занятых близкими, но разными ступеньками одного ферментативного синтеза. Для мутационного сдвига от одной генной формы к другой нужно много отдельных мутационных событий. Для участия же в процессах, подразделяющих на генном уровне задачу сложного ферментативного преобразования на несколько родственных, более частных и простых, достаточно меньшего числа независимых мутационных событий вследствие сохранения их структурного родства. [c.17]


    На первый взгляд это может показаться удивительным, так как эритроциты и нервная ткань очень далеки друг от друга и в ходе онтогенеза образуются из разных структур, различие между которыми возникает уже на самых первых этапах эмбрионального развития. Но, с другой стороны, это можно рассматривать как проявление экономичности природы, которая широко известна и может быть продемонстрирована на многих примерах. Действительно, если в ходе эволюции для данного вида животного сформировался определенный структурный ген (или гены), программируюш,ий строение АХЭ, то вполне попятно, что именно этот геп будет обеспечивать синтез фермента и в мозгу, и в эритроцитах. [c.206]

    Эффективным методом, позволяющим изучать изменчивость белков в природных популяциях и определять частоты генотипов и аллелей в популяциях, служит электрофорез в гелях (см. дополнение 22.1). Маса-тоши Ней предложил удобный способ оценки генетической дифференциации популяций по данным электрофореза (дополнение 26.1). При этом используются две величины 1) генетическое сходство I, оценивающее долю структурных генов, которые идентичны в обеих популяциях, и 2) генетическое расстояние (или дистанция) )-оценка среднего числа замен аллелей в каждом локусе, произошедших за время раздельной эволюции двух популяций. Замены аллелей имеют место тогда, когда в результате мутаций аллели в отдельных локусах замещаются другими аллелями или когда сразу замещается целый набор аллелей. Этот метод учитывает то обстоятельство, что замены аллелей могут быть неполными в какой-то части популяции новый аллель может вытеснить старый , который тем не менее с большей или меньшей частотой продолжает присутствовать в популяции. [c.214]

    Популяциям растений и животных, по-1видимому, свойственна высокая генетическая изменчивость — условие, необходимое для эволюции путем естественного отбора. Уровень генетической изменчивости, выявляемый методом гель-электрофореза, гораздо выше, чем предполагалось первоначально. Насколько именно он выше — до сих пор остается неясным, потому что, во- первых, необходимо еще решить ряд методических и теоретических проблем (в частности, выяснить, какая часть наблюдаемой из1мен чивости обусловлена аллельной изменчивостью структурного гена, а какая— посттрансляционной модификацией) и, во-<вторых, число ис- [c.256]

    Результаты структурного анализа позволяют сделать новые выводы относительно эволюции этого гена [361], учитывая неожиданную гомологию (примерно на 35%) аминокислотной последовательности белка фактора VIII с церулоплазмином (белком, связывающим медь) (см. раздел 7.2.3). [c.137]

    Сравнение с хромосомной эволюцией (разд. 7.1.2). Показано, что различия между кариотипами Homo и крупных человекообразных обезьян локализуются в гетерохроматине. Частично они затрагивают и центромерные районы. Теломерные районы проявляют видовые различия по Q- и Т-сегментам, не содержащим каких-либо идентифицированных на сегодняшний день сателлитных фракций (но, возможно, содержащим какие-то еще неизвестные сател-литаые фракции). Выше отмечалось, что эухроматиновые хромосомные сегменты, которые, как считается, содержат большинство структурных генов (разд. 2.3), по-видимому, одинаковы у всех изучавшихся до сих пор Видов приматов (разд. 7.2.1). Изменчивость обнаружена только при изучении сателлитной ДНК и гетерохроматиновых фракций. Это указывает на возможную роль данных фракций в эволюции специфических человеческих признаков. [c.17]

    Нам остается сделать вывод, что гены, важные для эволюции человека в течение периода, когда происходило преобразование его мозга, совершенно неизвестны. Поскольку большая часть ДНК человека не кодирует белков и либо вообще не нужна, либо участвует в регуляции генной активности (разд. 4.8), можно предположить, что соответствующие изменения локализованы именно в этой, не содержащей структурных генов ДНК [1993]. Такие изменения могли произойти в неэкспрессируемых участках ДНК, относительно которых постулируется, что они имеют регуляторные функции. Возможно, что нуклеотидные последовательности ДНК, несущественные для реализации функций структурных генов, необходимы для развития, и, следовательно, изменения таких последовательностей могли оказать особое влияние на преобразования функции мозга. Однако эта идея весьма спекулятивна и носит слишком общий характер. Чтобы сформулировать более конкретные гипотезы, необходимо больше знать о генетической детерминации эмбрионального развития и о генах, влияющих на межвидовую изменчивость поведенческих признаков (гл. 8). Даже если исключить из рассмотрения все фенотипические эффекты и ограничиться анализом таких известных генетических феноменов, как хромосомные перестройки, добавление или потеря материала хромосом, изменчивость сателлитной ДНК и аминокислотных последовательностей белков, все равно придется констатировать слабое понимание многих аспектов эволюционного процесса. Например, мы не знаем, как происходит фиксация хромосомных перестроек в популяциях. Идентичны ли механизмы их фиксации тем процессам, которые приводят к фиксации аминокислотных замен Какие элементарные события привели к образованию разных типов сателлитной [c.27]

    Район талии у-иепей ие обнаруживает статистически значимой гомологии с доменами константного и вариабельного районов. Этот факт следует иметь в виду в связи с проблемой организации структурных генов для тяжелых цепей иммуноглобулинов (см. гл. 5). Уже на основании сведений, полученных при изучении первичной структуры, закономерно заключить, что район талии кодирует ген, имеющий иное филогенетическое происхождение, нежели гены, кодирующие Ун- и Сн-домены. Ген для района талии эволюционировал независимо от С-генов, и в ходе его эволюции сформировалось семейство сходных в структурном отношении генов, кодирующих соответствующие районы иммуноглобулинов различных классов (подклассов). Несомненное близкое структурное родство по крайней мере группы генов, кодирующих районы талии IgG человека различных подклассов, следует из того факта, что гомология по этому району достигает 70%. Подобие первичной структуры районов талии у IgG и IgA человека очевидно. Оба подкласса IgA содерлсат три полуцистиновых остатка и богаты пролином. Заметна дупликация небольших сегментов последовательности в IgA 1 Pro—Ser —Thr—Pro—Pro—Thr—Pro. [c.67]

    Было высказано предположение, что экзоны кодируют определенные автономные элементы укладки полипептидной. цепи, представляющие собой функциональные сегменты белковой молекулы, которые сортируются в процессе эволюции. Если процессы такой перетасовки генетического материала, механизмы которых не рассматриваются, идут по районам интронов, то структура экзонов не изменяется и, следовательно, не нарушаются функциональные свойства отдельных белковых доменов. Экзоны могут соответствовать участкам доменов или отдельным белковым доменам, т. е. тем участкам белковой молекулы, которые можно выделить как пространственно делимые структуры, обладающие определенной биологической функцией. Установление раз.меров экзонов во многих генах показало, что главный класс экзонов имеет раз.меры около 140 п. и., что соответствует 40—50 а. о. в молекуле белка. Большая часть белковых доменов, содержащих в среднем 100—130 а. о., складывается из нескольких элементов вторичной структуры ( су-первторичных структурных единиц), кодируемых отдельными экзонами. М-терминальный участок из нескольких гидрофобных аминокислот (сигнальный пептид) секреторных белков, как правило, также кодируется отдельным экзоном. [c.192]

    В связи с развитием генной инженерии, сделавшей доступными антные белки, в последние годы более популярными становятся ючетные методы, основанные на предположении о существовании огии между биологической эволюцией и процессом оптимизации. При М руководящей является идея об эволюции целой структурной попу- [c.245]

    Обычно активные центры ферментов включают части всех структурных доменов глобулярного белка. Активные центры всех известных мультидоменных белков (табл. 5.2) расположены между доменами (рис. 4.1). Эти домены определяются не только как глобулярные области, разделенные полостью активного центра, но имеют и другое характерное для доменов свойство — они связаны между собой только одной пептидной цепью (табл. 5.2). Субстраты и кофакторы обычно присоединяются к разным доменам. В случае NAD связывающий кофактор домен всегда имеет ту же самую с довольно развитой открытой поверхностью топологию н NAD присоединяется в эквивалентных положениях (рис. 5.17, б), что является результатом эволюции [254, 255]. Кроме того, этот домен обнаружен на N-конце трех дегидрогеназ и одной киназы [230— 233, 235], а также на С-концевой половине четвертой дегидрогеназы [234] и в средней части фосфорилазы [236], что указывает на возможность дупликации соответствующего гена и его переноса в другое место генома. Все эти факты, включение в активный центр частей различных доменов, наличие кофакторепецифичных доменов и возможность переноса домена дают основание предположить, что ферменты конструируются с использованием модульной системы кофактор и субстратспецифичные домены, необходимые для обеспечения заданной функции, отбираются и объединяются в одной цепи глобулярного белка [124, 256]. [c.117]


Смотреть страницы где упоминается термин Эволюция структурных генов: [c.629]    [c.339]    [c.341]    [c.507]    [c.226]    [c.58]    [c.35]    [c.377]    [c.207]    [c.218]   
Эволюция без отбора Автоэволюция формы и функции (1981) -- [ c.298 , c.360 ]

Эволюция без отбора (1981) -- [ c.298 , c.360 ]




ПОИСК







© 2025 chem21.info Реклама на сайте