Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Новый антигенный рецептор NAR

    Усатая акула-нянька, как недавно установлено, обладает ранее неизвестной молекулой иммуноглобулинового суперсемейства, которая, возможно, эволюционно предшествовала появлению иммуноглобулинов и ТкР. Эта молекула (получившая название нового антигенного рецептора. НАР, англ. — NAR) состоит из одного вариабельного и пяти константных доменов и присутствует в сыворотке в виде димера. Кодирует НАР генный локус, который подвергается перестройке и соматическому мутированию. В настоящее время у хрящевых рыб выявлен новый класс химерных антител это позволяет усомниться в том, что первичным изотипом Ig является IgM. [c.289]


    Одно из самых значительных достижений рентгеноструктурного анализа белков последних лет, которое не может не повлиять на дальнейшее развитие биологии и становление ее новой области -молекулярной биологии клетки, состоит в начавшейся расшифровке трехмерных структур первых мембранных белков. Перед обсуждением полученных здесь результатов целесообразно кратко сообщить о том, что было известно об этих белках до исследования их с помощью рентгеновской дифракции. Если основные структурные особенности биологических мембран определяются молекулами липидного бислоя, то специфические функции мембран выполняются главным образом белками. Они ответственны за процессы превращения энергии, выступают в качестве рецепторов и ферментов, образуют каналы активного и пассивного транспорта молекул и ионов различных веществ через мембраны, охраняют организм от проникновения чужеродных антигенов и стимулируют иммунный ответ клеточного типа. В обычной плазматической мембране белок составляет около 50% ее массы. Однако в некоторых мембранах, например во внутренних мембранах митохондрий и хлоропластов, его содержание поднимается до 75%, а в других, например миелиновой мембране, снижается до 25%. Многие мембранные белки пронизывают липидный бислой насквозь и контактируют с водной средой по обеим сторонам мембраны. Молекулы этих белков, называемых трансмембранными, как и окружающие их молекулы липидов, обладают амфипатическими свойствами, поскольку содержат гидрофобные участки, взаимодействующие внутри бислоя с гидрофобными хвостами липидов, и гидрофильные участки, обращенные к воде с обеих сторон мембраны. Другая группа мембранных белков соприкасается с водой только с одной стороны бислоя [234, 235]. Одни из них погружены только во внешний или во внутренний слой мембраны, другие ассоциированы за счет невалентных взаимодействий с трансмембранными белками, третьи прикреплены к мембране с помощью ковалентно связанных с ними цепей жирных кислот, внедренных в липидный слой. [c.56]

    Применения иммобилизованных ферментов и белков в медицине открывают новые перспективы создания эффективных лекарственных средств. Ферменты, закрепленные на носителях или модифицированные полимерами, зачастую снижают свою антигенность из-за уменьшения доступности их для рецепторов иммунной системы. На принципах иммобилизации физиологически активных соединений базируется приготовление ферментных препаратов типа контейнер и других, обладающих повышенным терапевтическим эффектом. [c.17]


    Теперь известны и молекулярные механизмы этих реакций. Не последнюю роль в них играют ИЛ1 и ФНО, секретируемые макрофагами. Эти же клетки запускают реакцию лимфоцитов, представляя им антиген. Кроме того, макрофаги с помощью ИЛ1 способствуют размножению лимфоидных клеток, распознавших антиген. В свою очередь, Т-лимфоциты вьщеляют у-интерферон, который резко стимулирует все важнейшие функции макрофагов. Совместное действие ИЛ1 и ФНО на клетки эндотелия сосудов и фибробласты заставляет последние секретировать КСФ. Более того, клетки эндотелия экспрессируют рецепторы для адгезии лейкоцитов. Т-лимфоциты продуцируют ИЛЗ, а макрофаги — три других варианта КСФ. Факторы кроветворения (ИЛЗ, Г-КСФ, М-КСФ и ГМ-КСФ) обеспечивают выработку новых моноцитов и гранулярных лейкоцитов. Эндотелиальные клетки сосудов с помощью приобретенных рецепторов адгезии вылавливают новые порции лейкоцитов из кровотока, ФНО активирует их миграцию в очаг поражения. [c.90]

    Сейчас проводится изучение новых агентов, также обладающих неспецифическими иммуно-супрессивными свойствами, но действующих более избирательно рис. 27.25). Для элиминации клеток или блокирования их функции могут быть использованы моноклональные антитела к антигенам клеточной поверхности, в частности к СОЗ, D4, D8 и рецептору ИЛ-2. С целью повышения эффективности этих антител их можно конъюгировать с цитотоксическими агентами. Другой, подобный этому подход заключается в соединении токсина с ИЛ-2 экспрессирующие рецептор ИЛ-2 клетки, активация которых происходит при ответе на антигены трансплантата, связывают конъюгат ИЛ-2-токсин и избирательно инактивируются токсином. [c.503]

    Первой принципиально важной теорией была теория боковых цепей, вьщвинутая П. Эрлихом (1898). Согласно этой теории клетки органов и тканей имеют на своей поверхности рецепторы, способные в силу химического сродства с антигеном связывать последний. Взамен связанных антигеном рецепторов клетка вырабатывает новые рецепторы. Избыток их поступает в кровь и обеспечивает иммунитет к антигену. Эта теория хотя и наивна в своей основе, но привнесла в иммунологию принцип образования антител, способных связывать антиген, т.е. заложила основы представления о гуморальном иммунитете. [c.171]

    Начаты разработки новых поколений биодатчиков на базе аффинных взаимодействий (биосродства) типа фермент-ингибитор, антитело-антиген, агонист (антагонист)-клеточный рецептор, а также на основе полупроводниковых структур и мезоэлектричес-кого эффекта. Последние два биодатчика дают возможность создавать сенсоры, чувствительные к газам, что имеет существенное значение для создания роботов, реагирующих на изменения внешних воздействий. [c.102]

    Непрямые данные были получены прн изучении антиидиотипнческнх антител. Как уже говорилось, можно получить антитела, которые узнают антигенные детерминанты антиген-связывающих участков других антител такие детерминанты называются идиотипами. Антиидиотипические антитела, способные реагаровать с антиген-связывающим участком растворимого антитела к некоторому антигену X, будут связываться не только с анти-Х-антитела-ми в растворе, но также и с В-клетками, имеющими на своей поверхности те же самые антитела (как рецепторы для антигена X). Неудивительно, что присоединение антиидиотипических антител к этим рецепторам на поверхности В-клеток может ингибировать способность В-клеток узнавать антиген X н отвечать на него. Было показано, что в некоторых случаях антиидиотипические антитела связываются с Т-клвткамн н тоже ингибируют их способность отвечать на антиген X (рнс. 17-55). Генетические исследования позволяют предполагать, что идиотипы, общие для рецепторов В- н Т-клеток, могут кодироваться генными сегментами, определяющими вариабельные области Н-цепей иммуноглобулинов. Антиидиотипические антитела были использованы для выделения малых количеств рецепторов нз плазматических мембран Т-клеток. Хотя эти рецепторы состоят нз полипептидов, сходных по размерам с обычными Н-цепями, они не реагируют с антителами к константным областям каких-либо известных Н- или L-цепей иммуноглобулинов. Эти данные наводят на мысль, что рецепторы Т-клеток могут представлять собой какой-то новый класс Н-цепей, кодируемый специальным набором генов константной области н, возможно, некоторыми генными сегментами, кодирующими Ун-области обычных антител Этой гипотезе противоречит то, что в экспериментах с нспользованнем техники рекомбинантной ДНК не удалось [c.51]

    Это центральное положение клонально-селекционной теории иммунитета долгие годы вызывало большие дискуссии. Была понятна предтерминированность к антигенам, с которыми организм встречался в процессе филогенеза, но возникали сомнения действительно ли есть Т-лимфоциты с рецепторами к новым (синтетическим и химическим) антигенам, возникновение которых в природе связано с развитием технического прогресса в XX веке. Однако специальные исследования, проведенные с помощью наиболее чувствительных серологических методов, выявили у человека и более чем у 10 видов млекопитающих нормальные антитела к ряду химических гаптенов — динитрофенилу, З-йод-4-оксифенилуксусной кислоте и т. д. [118]. По-видимому, трехмерные структуры рецепторов действительно весьма разнообразны, и в организме всегда может найтись несколько клеток, рецепторы которых достаточно близки к новой детерминанте. Возможно, что окончательная притирка рецептора к детерминанте может происходить после их соединения в процессе дифференцировки Трлимфоцитов в Тг-лимфоциты после встречи со своим антигеном Тр клетка путем одного — двух делений превращается в ан-тигенраспознающую и активированную (коммитирован-ную, примированную по терминологии разных авторов) антигеном долгоживущую Тг-клетку. Тг-лимфоциты способны к рециркуляции, могут повторно попадать в тимус, чувствительны к действию анти-0-, антитимоцитарных и антилимфоцитарных сывороток. Эти лимфоциты составляют центральное звено иммунной системы. После образования клона, т. е. размножения путем деления в морфологически идентичные, но функционально неоднородные клетки, Т-лимфоциты активно участвуют в формировании иммунного ответа. [c.8]


    Г ипотеза совместного узнавания МНС дала по меиьшей мере возможные ответы на многие вопросы, первоначально возникшие в связи с экспериментами по трансплантации органов, однако она породила новую проблему каким образом весьма небольшое число разных молекул МНС данного животного (менее двух десятков) может связываться с набором разных пептидов, достаточно широким для того, чтобы обеспечить ответ Т-клеток практически па любой белковой антиген Взаимодействия антигена с антителом и с гликопротеинами МНС класса 1 стали попятпы в результате рентгеноструктурного анализа этих молекул. Такие исследования необходимо теперь распрострапить на взаимодействие между комплексом МНС-антиген и Т-клеточным рецептором. Технология рекомбинантных ДНК должна в скором времени обеспечить достаточные количества Т-клеточных рецепторов в растворимой форме, что сделает проекты гакого рола реальными. В результате работ с использовапием рекомбинантных ДНК уже было показано, что все эти белки - молекулы МНС, Т-клеточные рецепторы и антитела - имеют давнюю обшую историю. [c.281]

    Способ иммобилизации влияет на иммунный ответ организма. Ковалентное связывание с полисахаридами, полиэтиленгликолем во многих случаях приводит к снижению иммуногенности препарата, поскольку матрица носителя не допускает контакта с рецептором. С другой стороны, связывание с носителями-полиэлектролитами неоднократно приводило к повыщению иммуно генности препарата. Применение полиакриловой кислоты, поли-винилпиридина и его производных, полимеров на основе О-глутаминовой кислоты и О-лизина в качестве носителей позволило получить препараты, дающие высокий иммунный ответ. На это могут быть разные причины. Возможно, полиэлектролиты образуют прочные комплексы с белком нековалентного типа, которые медленно высвобождают активное начало (белок без какой-либо химической модификации) с более или менее постоянной скоростью или полиэлектролит в комплексе с белком может удерживаться в районе рецептора, высвобождая белок-антиген. Сейчас трудно дать объяснение этому явлению. Но, с другой стороны, полиэлектролитные комплексы могут быть основой создания вакцин нового типа, позволяющих повысить иммунный ответ в организме животных и способствующих выработке антител к любым антигенам (Р. В. Петров, В. А. Кабанов, 1982). [c.127]

    Первый этап в развитии специфического иммунного ответа на инфекцию связан с активацией Т-клеток в ближайшем к мВсту проникновения патогена лимфатическом узле. Именно в лимфоидном органе возможна специфическая сенсибилизация таких лимфоцитов. Как было рассмотрено выше (гл.9), антиген (патоген) из тканей проникает в ближайшие лимфатические узлы по лимфатическим сосудам. Если он попадает непосредственно в кровеносное русло, то основным местом формирования иммунного ответа становится селезенка. Антиген в лимфоидной ткани захватывается специализированными антигенпрезентирующими клетками, с тем чтобы представить фрагменты антигена в иммуногенной < юрме на поверхности этих, клеток. Среди постоянно циркулирующих через лимфоидную ткань Т-клеток задерживаются только те, которые имеют соответствующие по специфичности антигенраспознающие рецепторы. Понятно, что таких преадаптированных клеток очень немного. Основная же масса Т-клеток выходит из конкретного лимфоидного органа и вступает в новый цикл рециркуляции. Молекулярные механизмы проникновения Т-клеток в органы и выход из них рассматривались в главе 9. [c.333]

    Константа скорости такой важнейшей в биологическом отношении реакции, как фермент-субстрат, достигает значений порядка 10 —10 м с . Аналогичные значения константы скорости характерны для реакции антител с антигенами или гаптенами. Но между сравниваемыми реакциями существуют очень важные различия. В случае ферментативного катализа за счет изменения химического строения субстрата сродство образующегося продукта к активному центру фермента крайне мало по сравнению с субстратом. В силу этого активный центр становится доступным для реакции с новой молекулой субстрата. Напротив, комплекс антиген (гаптен)-антите-ло не подвергается внутренним превращениям, которые могли бы привести к освобождению активного центра антитела. Аналогично протекает реакция антигена с поверхностными рецепторами клеток иммунрюй системы. Вследствие этого судьба антител (рецепторов) — это их распад в процессе катаболизма комплекса. Следовательно, протекающие в иммунной системе химические реакции, определяющие ее роль в гомеостазе, по существу необратимы. Это отличает их как от реакции фермент-субстрат, так, видимо, и от других менее изученных в кинетическом плане реакций, регулирующих гомеостаз специфической рецепции клетками субстратов, разнообразных медиаторов и другими реакциями. [c.6]

    Процесс захвата п переработки растворимого антигена макрофагами протекает в две стадии. Первая — может протекать при температуре ниже 37° С и не требует энергетических затрат. Этот процесс состоит в неспеци-фической адсорбции молекул антигена на цитоплазматической мембране. Вслед за этой фазой наступает вторая— зависимая от температуры. Если на этой стадии макрофаги поместить в среду без глюкозы, содеря ащую 2-дезоксиглюкозу и азид натрия (вещества, блокирующие анаэробное и аэробное дыхание соответственно), процессинг антигена не произойдет, и макрофаги окажутся неспособными активировать Т-лимфоциты. В свою очередь, если после адсорбции антигена на поверхности макрофагов при 4° С проинкубировать клетки с трипсином, произойдет десорбция антигена, однако макрофаги сохранят способность связать новую порцию антигена. Но если обработку трипсином произвести после адсорбции антигена при 4° С и последующей инкубации клеток при 37° С, то удалить антиген с клеточной поверхности не удастся. Антиген находится в такой форме, что нечувствителен к действию протеиназы и не может быть экранирован антителами к нему для рецепторов Т-лимфоцитов (А. Rosenthal, 1978). Все это указывает на несомненные конформационные превращения антигена в ходе температурозависимой фазы процессинга. [c.213]

    Фаговый дисплей в исследовании коротких пептидов и эпитопов. В живом организме большинство биологических процессов управляется посредством специфических белок-белковых или белково-нуклеиновых взаимодействий. К таким процессам относятся, например, регуляция транскрипции генов под действием различных белковых факторов, взаимодействие белковых лигандов с рецепторами на поверхности клеток, а также специфическое связывание антигенов соответствующими антителами. Понимание молекулярных механизмов взаимодействия белковых лигандов с рецепторами имеет большое фундаментальное и прикладное значение. В частности, разработка новых лекарственных препаратов белковой природы обычно начинается с идентификации исходной последовательности аминокислот, обладающей требуемой биологической активностью (так называемая основная (lead) последовательность). Однако пептиды с основной последовательностью аминокислот могут обладать и неже- [c.336]

    Лимфоциты, активированные связыванием антигена, вступают в цикл клеточного деления. Они экспрессируют новые рецепторы, позволяющие им реагировать на выделяемые другими клетками цитокины, которые служат сигналами к пролиферации. Лимфоциты могут тагоке сами начать выделение цитокинов. Обычно они проходят ряд циклов деления, прежде чем дифференцируются в зрелые клетки, снова под действием цитокинов. Например, пролиферирующие В-клет1си в итоге созревают в образующие антитела плазматические клетки. Даже после устранения инфекции сохраняется некоторая часть новообразованных лимфоцитов, способных вновь активироваться, если антиген встретится им повторно. Их называют клетками памяти, так как они хранят иммунологическую память относительно отдельных антигенов. Существованием клеток памяти и обусловлен долгосрочный иммунитет к тому или иному возбудителю. [c.12]

    Исследования in vitro с применением этих агентов показали, что активация Т- и В-клеток вызывает синтез цитокинов и рецепторов для них. Взаимодействие цитокинов с рецепторами индуцирует вступление клеток в цикл деления (пролиферация) и их последующее созревание с образованием эффекторных клеток или клеток иммунологической памяти. В условиях in vitro клетки памяти рециркулируют и в итоге расселяются по Т- и В-зависимым областям лимфоидных тканей, где они в дальнейшем остаются, сохраняя готовность к ответу при новой встрече с тем же антигеном. [c.29]

    Тем не менее использование мутаций Н-2 позволило совершенно по-новому подойти к решению проблемы соотношения между аллоантигенами (Н-2) клеточной мембраны, которые определяются серологически (при помощи антител), и теми, которые могут активировать клетки Т. Активность последних выявляется в реакциях отторжения трансплантатов, а также в других реакциях клеточного иммунитета. Да недавнего времени казалось, что те же самые антигены (специфичности) Н-2 выявляются как антителами, так и в реакциях клеточного иммунитета, поскольку обычно отторжение трансплантата сопровождается образованием гуморальных антител. Углубленный генетический анализ комплекса Н-2 с применением мутантов и усовершенствование иммунологических методик вызвали сомнения в правильности этого положения трансплантационной иммунологии (Ba h е. а., 1972, 1976 Egorov, 1974). Теперь известно, что отторжение трансплантатов по сильному типу в случае несовместимости по мутациям типа I (а также другие сильные реакции клеточного иммунитета) не связано с образованием антител, хотя небольшие изменения серологически определимых антигенов у му тантов все же обнаруживаются. Следовательно, специфичность рецепторов клеток Т и В, распознающих трансплантационные антигены, не идентична. [c.212]


Смотреть страницы где упоминается термин Новый антигенный рецептор NAR : [c.157]    [c.170]    [c.693]    [c.224]    [c.279]    [c.91]    [c.146]    [c.185]    [c.224]    [c.279]   
Иммунология (0) -- [ c.289 ]




ПОИСК





Смотрите так же термины и статьи:

Антигенность

Антигены



© 2025 chem21.info Реклама на сайте