Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Носитель или матрица в хроматографии

    Распределительная жидкостная хроматография имеет один немаловажный недостаток. Дело в том, что неподвижную жидкую фазу трудно длительное время удерживать в связи с твердым носителем. Постепенно она вымывается элюентом, и эффективность хроматографической системы снижается. Поэтому в последние годы получили широкое распространение методы химической модификации поверхности твердой матрицы носителя, иа которой фиксируется слой гид- [c.169]


    В литературе описано большое число производных целлюлозы, которые постоянно использовались при разработке методологии очистки белков. При этом, однако, всегда отмечалось наличие ряда ограничений в применении целлюлозы не толька в обычных методах очистки, таких, как ионообменная хроматография, но и в аффинной хроматографии. Эти ограничения связаны в основном с неблагоприятной физической структурой (недостаточной пористостью) и неподходящей геометрической формой отдельных частиц. Кроме того, дополнительные затруднения для такого использования целлюлозы обусловлены наличием обширных микрокристаллических участков внутри матрицы. Недавно большинство указанных недостатков, относящихся к применявшейся ранее фибриллярной, порошкообразной целлюлозе, были устранены были разработаны новые виды целлюлозных носителей, например пористая сферическая цел люлоза. [c.19]

    Теоретический анализ и экспериментальные исследования показали, что оптимальным материалом для изготовления бипористых матриц является политетрафторэтилен с размерами микропор в интервале от долей до единиц мкм при условии минимальной дисперсии их размеров в пределах одной массообменной матрицы. В то же время размер макропор можно варьировать в пределах от 0,25 до 3 мм, как и в случае микропор с минимальной дисперсией размеров. При этом критерий выбора размеров макропор аналогичен критерию выбора размеров частиц сорбентов и носителей в хроматографии. Этот критерий — компромисс между улучшением проницаемости колонки или матрицы в данном случае для полярной фазы и ухудшением разрешения зон разделяемых веществ. По аналогии с насадками в классической хроматографии таким компромиссом являются макропоры в интервале [c.248]

    В обычной аффинной хроматографии для иммобилизации субстратов в качестве носителей используются агароза и сшитая сефароза. В качестве сшивающего агента обычно выступает ВгСМ, а мостик образован а,о)-диамином. Эти полисахаридные носители подвержены биодеградации, и, следовательно, органические полимерные гели более удобны в качестве матрицы и допускают более широкий набор химических модификаций. Именно эти причины побудили Уайт-сайдса и сотр. разработать новый метод иммобилизации ферментов в сшитых органических полимерных гелях [126]. По своей простоте и универсальности этот метод превосходит ранее предложенные. Особенно ценен он при иммобилизации относительно лабильных ферментов для использования в ферментерах большого размера при проведении реакций органического синтеза, катализируемых ферментами. [c.257]


    Метод афинной хроматографии основан на единственной в своем роде биологической специфичности взаимодействия между биологическими макромолекулами, такими как ферменты, и лигандами — субстратами, специфическими ингибиторами и коферментами. Этот мощный метод приобретает все возрастающее значение для очистки ферментов. Обычным экспериментальным приемом в связи с этим является образование ковалентной связи между специфическим лигандом и нерастворимой матрицей-носителем. Результирующий материал пакуют в колонку, на которой, в принципе, будет сорбироваться только фермент (ферменты), обладающий значительным сродством к лиганду, в то время как все другие белки будут беспрепятственно проходить через нее. Элюция специфически адсорбированного белка достигается изменением состава растворителя, благоприятствующим диссоциации комплекса фермент-лиганд [127]. [c.642]

    Было высказано предположение, то экстракционная способность экстрагента, вошедшего в матрицу полимера-носителя, будет пониженной за счет сольватации полимера экстрагентом [32]. Другими исследователями [33, 34] также отмечается, что в колонках, наполненных сополимерами стирола с ДВБ, обработанными экстрагентом, коэффициенты распределения элемента заметно ниже, чем для такого же экстрагента в статической экстракции. Это явление пытались объяснить, рассматривая матрицу полимера как инертный разбавитель для экстрагента [34]. Поэтому расчет условий хроматографического разделения из данных по статической экстракции затрудняется. Однако более прочная связь экстрагента с носителем приводит к меньшей растворимости экстрагента в элюентах, чем при хроматографии на колонках, заполненных другими носителями, или чем растворимость экстрагента в условиях статической экстракции. [c.201]

    См. лит. при ст. Радиационная химия, Радшгционно-химиче ская технология. Радиоактивность. А. X. Брегер. ИОНИТЫ (ионообменники, ионообменные сорбенты), вещества, способные к ионному обмену при контакте с р-рами электролитов. Большинство И.— твердые, нерастворимые, ограниченно набухающие в-ва. Состоят из каркаса (матрицы), несущего положит, или отрицат. заряд, и подвижных противоионов, к-рые компенсируют своими зарядами заряд каркаса и стехиометрически обмениваются на противоио-ны р-ра электролита. По знаку заряда обменивающихся ионов И. делят на катиониты, аниониты и амфолиты, по хим. природе каркаса — на неорг., орг. и минер.-органические. Неорг. и орг. И. могут быть природными (напр., цеолиты, целлюлоза, древесина, торф) и синтетическими (силикагель, АЬОз, сульфоуголь и наиб, важные — ионообменные смолы). Минер.-орг. состоят из орг. полиэлектролита на минер, носителе или неорг. И., диспергированного в полимерном связующем. Выпускаются в виде зерен сферич. или неправильной формы, порошков, волокон, тканей, паст и изделий (напр., мембран ионитовых). Примен. для очистки, разделения и концентрирования в-в из водных, орг. и газообразных сред, напр, для очистки сточных вод, лек. ср-в, сахара, выделения ценных металлов, при водоподго-товке носители в хроматографии гетерог. катализаторы. [c.224]

    Однако кажущаяся простота метода и отсутствие у новичка представления о возможных трудностях, сопровождающих его применение на практике, могут привести к обескураживающим неудачам. Действительно, трудно заранее предугадать, какой аффинный лиганд полезнее выбрать — с высоким или низким сродством, какова наиболее благоприятная концентрация этого лиганда в сорбенте, какую роль должна играть матрица, какие носители подходят и какие не подходят для иммобилизации аффинного лиганда. Например, отлично зарекомендовавшие себя с точки зрения иммобилизации ферментов носители на основе кремнезема оказываются в ряде случаев совершенно непригодными для использования в аффинной хроматографии из-за высокой неспецифической сорбции. [c.5]

    Инертный носитель может быть полиуретаном или полимером другого типа либо природным полимером (например, коллаген, легко выделяемый из шкур животных). Подвижный мостик присоединен к функциональной группе на полимерном геле. Длина мостика — важный параметр, так как свободный конец должен быть способен образовать ковалентную связь с функциональной группой фермента, не влияя на ферментативную активность. Такой фермент, пришитый к матрице, обычно называют иммобилизованным, ферментом [122—125]. В отличие от широко распространенного метода аффинной хроматографии в данном случае фермент, а не субстрат ковалентно сшпт с твердым носителем. Однако принцип биоспецифического узнавания тот же. [c.257]

    Применение газовой хроматографии для аминокислотного анализа лимитировалось несколькими факторами. В литературе можно найти много методов, явно удовлетворительных в руках их авторов, которые оказалось трудно или невозможно воспроизвести в любой другой лаборатории. Хорошей хроматографической методике свойствен выбор и проверка произвольных величин для ряда взаимосвязанных переменных — носителей, жидких фаз, температур и т. д. Если принять во внимание дополнительные переменные, связанные с выбором производных и метода синтеза, то неудивительно, что множество работ имеет мало общих точек соприкосновения и в каждой из этих работ говорится о каких-либо улучшениях или преимуществах. На этом основании доверие к ГХ как практическому методу определения аминокислот поколебалось. Те же особенности усложняли и написание обзора литературы, так как многоразмерная матрица, определяемая всеми переменными, ни в коей мере не являлась полностью исследованной. Часто объяснение, выдвигаемое в одной работе, нельзя подтвердить ссылкой на другую Например, производные, полученные в процессе А, анализируются одним исследователем на колонке типа X, и при этом пик аргинина не обнаруживается, другой автор получает производные по схеме В, анализирует их на колонке У и указывает пик аргинина. Неизвестно, то ли первому исследователю не удалось получить желаемое производное аргинина, то ли он [c.87]


    В последние годы все более широкое применение в химии углеводов находит важный и относительно новый метод, известный под названием аффинной хроматографии. Этот метод включает использование носителей с лигандами, имеющими значительное сродство к молекулам с определенной стереохимией. Лиганд, который в данном случае представляет собой лектин (гемагглютинирующий гликопротеин), ковалентно присоединяется к нерастворимой матрице, обычно агарозной или полиакриламидной природы. При хроматографии полисахариды или гликопротеины, содержащие группировки, связывающиеся с лектином, удерживаются на подобного рода носителях и таким образом отделяются от других компонентов, которые быстро проходят через колонку. Связанные с носителем соединения далее можно десорбировать путем элюирования колонки раствором низкомолекулярного углевода, содержащего группировку, специфически связывающуюся с лектином. Тот же эффект достигается при изменении pH или ионной силы элюента с тем, чтобы разрушить образовавшийся ранее комплекс адсорбированного соединения с иммобилизованным лектином. [c.34]

    Развитие аффинной хроматографии для препаративного выделения макромолекул привело к разработке многочисленных методов иммобилизации лигандов на твердых носителях. Рамки настоящей главы не позволяют рассмотреть все известные методы иммобилизации, однако остановимся на нескольких общих принципах конструирования аффинных матриц, предназначенных для использования в аналитической аффинной хроматографии. [c.225]

    При установлении констант равновесного связывания по данным хроматографии с зональным элюированием весьма важно, чтобы емкость колонки и сродство подвижного компонента к иммобилизованному лиганду соответствовали друг другу, только тогда можно получить в течение разумных промежутков времени вполне четкие кривые элюирования. Получение четких кривых элюирования зависит от ряда параметров, таких, как размер шариков и пор матрицы, диаметр и длина колонки и скорость потока [11, 12]. Кроме того, удерживание подвижного компонента непосредственно зависит от количества лиганда, присоединенного к матрице [1, 3]. При постоянной скорости потока и постоянном объеме колонки зоны подвижного компонента, введенного на матрицу с меньшим количеством иммобилизованного лиганда, элюируются в виде более острых пиков при меньших объемах элюирования. Увеличение количества иммобилизованного лиганда приводит к более широким пикам и большим объемам элюирования. Для установления соответствующей концентрации иммобилизованного лиганда для данной серии экспериментов обычно прибегают к методу проб и ошибок. Концентрация присоединенного к твердому носителю лиганда может первоначально контролироваться путем введения в реакцию с активированным твердым носителем определенных количеств лиганда. Дальнейшим исследованием ряда препаратов матрицы с различной плотностью лиганда можно опреде- [c.225]

    Необратимость взаимодействия клеток с аффинным носителем хотя адсорбция клеток на специфических иммобилизованных лигандах зачастую достигается легко, постоянно возникали трудности при последующем выделении связавшихся клеток с применением методов, совместимых с жизнеспособностью клеток. Одна из причин этих трудностей — многоточечное связывание между клеткой и носителем каждая клетка обладает многочисленными рецепторами для иммобилизованного лиганда, причем несколько молекул лиганда сами связаны с одной и той же частицей матрицы или поверхности. Второй причиной необратимого связывания клеток с аффинным носителем может быть очень высокое сродство между иммобилизованным лигандом и его рецептором на поверхности клетки, которое часто возникает, если узнавание клетки и лиганда основано на взаимодействии антиген — антитело это весьма серьезное ограничение при выделении жизнеспособных клеток иммуноаффинной хроматографией. [c.247]

    Разделение молекул при жидкостной хроматографии достигается за счет их распределения между подвижной фазой (растворителем) и стационарной фазой (матрицей колонки). Если молекулы вещества X в большей степени связываются с матрицей, чем молекулы вещества V, то вещество V будет элюироваться с колонки раньше, чем вещество X. В случае гель-прони-кающей хроматографии (ГПХ) стационарная фаза представляет собой пористые гранулы. Здесь разделение молекул достигается за счет того, что поры дифференциально замедляют движение веществ в колонке. Некоторые низкомолекулярные вещества полностью входят в поры гранул носителя, другие, более крупные, входят только частично или совсем не входят. Молекула Б, более крупная, чем молекула А, будет элюироваться с колонки раньше, чем молекула А. Все молекулы, которые не входят в поры гранул носителя, сойдут с колонки в той порции элюата, которая называется исключенным (или свободным) объемом (Уо). Все другие молекулы будут элюироваться с колонки в зависимости от их размера. Самые маленькие молекулы, способные входить в поры носителя без какого-либо взаимодействия с ним, элюируются объемом растворителя, который называют полным объемом 1. [c.134]

    Химическое модифицирование поверхности минеральных носителей полимерами — большая самостоятельная область исследований, в которой используются как рассмотренные выше методы иммобилизации (разд. 4.1.2) и поверхностной сборки (разд. 4.1.5), так и свои специфические способы модифицирования, связанные с процессами полимеризации и поликонденсации мономеров в поверхностном слое матрицы. Дисперсные неорганические веш,ества, модифицированные полимерами, находят применение в адсорбции, хроматографии, катализе, но главная сфера их использования — наполнение полимерных материалов. [c.154]

    Считается, что в результате набухания в органических растворителях сополимеры стирола с ДВБ могут удерживать большие количества экстрагента, чем ненабухающие носители. Но при этом необходимо учитывать, что, поскольку экстрагент входит в матрицу сополимера, экстрагированный элемент также будет входить в нее поэтому реэкстракция оказывается замедленной. В газовой хроматографии для сравнения влияния носителей на размывание хроматографического пика, вызванное сорбцией, служит фактор асимметричности, а именно отношение задней полуширины пика к передней полуширине на половине высоты пика. В табл. 8 приведены факторы асимметричности пиков, по- [c.200]

    В качестве аффинных лигандов можно использовать любые соединения, прочно, специфично и обратимо связывающиеся с выделяемым веществом. Химическое строение аффинных лигандов может быть самым различным. Поскольку в настоящее время метод аффинной хроматографии применяется главным образом для выделения ферментов и их ингибиторов [89J, мы рассмотрим примеры, взятые из этой области. Как уже упоминалось, при выделении фермента аффинными лигандам1И могут служить его ингибитор, аналогичный субстрату, а также эффектор, кофактор и в отдельных случаях даже субстрат. Это справедливо и для фермента, требующего длл реакции два субстрата, но способного достаточно сильно связываться только с одним из них. Субстрат также можно использовать для адсорбции фермента в таких условиях, когда фермент связывается, но сам не способен катализировать реакцию (например, в отсутствие ионов металлов, необходимых для реакции), а также когда константа Михаэлиса зависит от pH или температуры. Аффинный адсорбент для выделения белков обычно трудно получить из аффинного лиганда, если константа диссоциации его комплекса с белком превышает (0,5—1,0)-Ю [16]. Однако Стире и сотр. [84] показали, что очень эффективный адсорбент для р-галактозидазы можно получить даже из такого относительно слабого ингибитора, как н-аминофенил-р-о-тиогалактопирано-зид (/i , 5-10 ). Этого удается достигнуть, повышая концентрацию нерастворимого аффинного лиганда и увеличивая расстояние между аффинным лигандом и матрицей носителя, что приводит к максимальной доступности аффинного лиганда, для белка в растворе.  [c.9]

    По нерастворимому остову (матрице) определенным образом распределены ковалентно связанные функциональные группы, способные к диссоциации. Первые разработанные специально для ионо-обменной хроматографии твердые носители получали следующим образом на стеклянные шарики наносили путем полимеризации по-листирольную плен и в нее ввод1ши функциональные группы. В современных ионообменниках с пористым силикагелем ковалентно связаны (по типу щеток ) алкильные или арильные группы, в которые введены ионообменные группы. Чаще всего это сульфогруппы, реже карбоксильные группы (катионообменники) или четвертичные аммониевые группы (анионообменники). Обычные ионообменники меняют свой объем при изменении pH, концентрации ионов и температуры элюента. Прежде чем заполнять колонки, им надо дать набухнуть. [c.94]

    Однако из упоминаемых выше экспериментов все же не следует, что только расстояние аффинанта от матрицы — решающий фактор, определяющий силу связывания. Изучая гидрофобные пространственные группы О Карра и др. [25—27] показали, что во многих случаях сорбция более зависит от гидрофобного связывания выделяемого вещества гидрофобной цепью, чем от образования биоспецифического комплекса. В качестве одного из наиболее часто цитируемого в статьях о влиянии пространственных групп примера, относящегося к аффинной хроматографии р-галак-тозидазы на носителях [31], можно рассмотреть следующие сорбенты  [c.71]

    Ограниченная диффузия возникает, если молекулярная диффузия в порах матрицы затруднена из-за экранирования подхода макромолекул к прикрепленному аффинному лиганду. Экспериментально вклад этой диффузии можно определить с большим трудом, но для аффинной хроматографии на очень пористых носителях эти трудности становятся минимальными. На практике для достижения равновесных условий желательно, чтобы скорость потока была по возможности низкой. Например, при скорости потока 400 мл/ч для выделения стафилококковой нуклеазы на колонке объемом 20 мл небольшие количества нуклеазы появлялись в первом пике вместе с белковыми примесями, особенно если общая концентрация белков в образце была высока (20—30 мг/мл) [5]. Однако даже при такой высокой скорости потока нуклеаза полностью сорбировалась, если наносился менее концентрированный образец. Зависимость связывания лактатдегидрогеназы на №-(6-аминогексил)-5 -АМР — сефарозе от скорости потока пссле-дована Лоу и др. [21]. Было найдено, что увеличение скорости потока относительно мало влияет на сорбцию. При высоких скоростях потока эффективность колонки (ВЭТТ), а также связываемость р уменьшаются. Влияние скорости потока более заметно в небольших колонках, с которых часть белка с ферментативной активностью элюируется со свободным объемом. Влияния концентрации инертного белка (бычьего сывороточного альбумина) при высоких скоростях потока (67 мл/ч) также не обнаружено. [c.84]

    Если аффинный лиганд присоедипен к матрице с помощью азосвязи или сложноэфирными связями тиолов или спиртов, с нерастворимой матрицы можно снять комплекс аффинного лиганда с выделяемым веществом, а затем аффинный лиганд отделить диализом или гель-фильтрацией. Этот способ, однако, не позволяет повторно использовать аффинную матрицу. Носители такого типа детально обсуждены в разделе о ковалентной хроматографии (разд. 7.2). [c.272]

    Специфические сорбенты, использующие исключительные свойства биологически активных веществ образовывать специфические и обратимые комплексы, в огромной степени облегчают выделение ряда ферментов, их ингибиторов и кофакторов, антител и антигенов, лектинов, гликопротеинов, гликополисахаридов, нуклеиновых кислот, нуклеотидов, жиров, транспортных и рецепторных белков, гормонов и их рецепторов, клеток и многих других соединений, как это представлено в обзорной табл. 11.1. Наряду с названием выделяемого вещества в таблице приведены также используемые аффинные лиганды, нерастворимые носители и пространственные группы, причем указано, аффинный лиганд или нерастворимая матрица модифицированы данной пространственной группой. Обзорная таблица включает выделения веществ как с помощью типичной биоаффинной хроматографии, так и с помощью гидрофобной или ковалентной хроматографии. [c.367]

    История развития области полимераналогичных реакций включает несколько этапов. Модификация целлюлозы, введение достаточно простых функциональных групп путем реакций замещения в полимерной цепи и полимераналогичных реакций по группам, сохранившимся после полимеризации, обусловили успехи в синтезе ионообменных полимеров и их практическом использовании (катализ путем ионного обмена). Большие успехи достигнуты и при иммобилизации энзимов, применении в качестве носителей гомогенных катализаторов, разработке специальных вариантов синтеза полимеров (например, синтез Мерифилда) и использовании функциональных полимеров для афинной хроматографии. Эти достижения привели к тому, что специфические полимераналогичные превращения на подходящих полимерных матрицах позволили вводить фиксированные на носителе определенные реакционноспособные группы. Полимеры, содержащие связанные с ними функциональные системы, часто называют полимерными реагентами. Необходимость направленного синтеза таких реагентов обусловлена специфическими областями их применения (например, полимерные катализаторы или полимерная фармакология). [c.78]

    Однако -нитрофенильную группу удалось заместить только на L-фенилаланин-п-нитроанилид или -лейцин-п-нитроанилид. Амидные связи в боковой цепи, которые образуются за счет специфической -аминокислоты, могут быть разрушены с помош,ью химо-трипсина как in vivo, так и in vitro. Платэ и Валуев [136] описали синтез афинных адсорбентов для биоспецифической хроматографии. Химическими методами осуществляется иммобилизация полимерных носителей путем связывания специфических лигандов с матрицей. После активации бромцианом протеин может быть связан с имидокарбонильной группой  [c.101]

    Так называемая обращенно-фазовая хроматография тРНК в действительности представляет собой сочетание методов распределительной и ионообменной хроматографии. Если использовать неподвижную фазу, адсорбированную на инертной матрице, а элюирование проводить в градиенте концентрации соли, то В ходе хроматографии будут непрерывно меняться коэффициенты распределения тРНК между подвижной и неподвижной фазами, т. е. таким образом в экспериментальные условия вводится дополнительный параметр. Такая методика разделения хРНК описана в работе [56]. В качестве инертного носителя авторы использовали сефадекс G-25, неподвижная водная фаза [c.172]

    Для исследования специфического связывания биологически активных макромолекул с клеточными рецепторами широко применяются методы аффинной хроматографии. Основной недостаток обычных аффинных сорбентов — низкая эффективность использования специфических рецепторов при их химической пришивке к пористому инертному носителю, а также потеря нативности и некоторых физиологических функций рецепторов из-за процедуры химической модификации. В литературе описан метод получения аффинных сорбентов на основе фрагментов клеточных мембран эритроцитов, лимфоцитов и гепатоцитов, иммобилизованных в матрицу полиакрилонитрила. Эти сорбенты проявляют высокую тканеспецифическую селективность связывания своих природных белков-лигандов (Грушка и др., 1988 Чернова, Гуревич, 1996). Аналогичные сорбенты могут быть использованы для определения селективности связывания пептидов и НПК с клеточными мембранами определенной дифференцированной ткани. [c.180]

    Для выделения различных мембранных структур используется и аффинная хроматография. Принцип этого метода заключается в способности выделяемого вещества специфически связываться с лигандом, пришитым к нерастворимому носителю, при пропускании раствора через матрицу. В качестве последней применяют сефарозы (агарозные гели), активируемые путем связывания различных лигандов кофакторов, ингибиторов, субстратов мембранных белков-ферментов, лектинов в случае выделения гликопротеинов гормонов, бромциана, конканавалина А — соответственно при получении мембран, антител или целых клеток, Элюирование исследуемого вещества осуществляют в условиях диссоциации комплекса лиганд — вещество и сохранения нативной структуры выделяемого соединения. [c.221]

    В качестве матрицы в аффинной хроматографии наиболее широко используется агароза. Это очиш,енный линейный содержащий галактозу (рис. 1) аэрогель-ксерогелевый коллоид, выделяемый или из агара или непосредственно из содержащих агар морских водорослей. Агароза характеризуется хорошей гелеобразующей способностью она относительно биологически инертна и поэтому удобна в качестве носителей не только для аффинной хроматографии, но также и для гель-фильтрации. Агар и агароза — не синонимы, и различные агарозные препараты также могут значительно отличаться друг от друга по своим физико-химическим свойствам. Некоторые агарсодержащие морские водоросли приведены в табл. 1. [c.11]

    Супероза 6В — агарозная матрица с высокой степенью сшивки, образующая очень жесткий гель. Эффективность этой матрицы в качестве носителя для адсорбентов, используемых для разделения в условиях высокоэффективной хроматографии, обусловлена наличием поперечных сшивок, а также однородностью частиц по размеру (который характеризуется узким интервалом 20—40 мкм). По данным фирмы-производителя (РЬагтас1а) в колонке (1,6X60 см) при скорости тока 0,3 мл/мин создается, как правило, обратное давление менее [c.18]

    Как было отмечено выше, для ВЖХ белков разработаны новые типы матриц, которые позволили устранить многие негативные факторы при хроматографии. Первой существенной модификацией, которая привела к значительным положительным эффектам, было улучшение покрытия матриц требуемым адсорбирующим компонентом, например алкильными группами в случае ОФ-ВЖХ, а также блокировка остальных свободных си-ланольных групп низкомолекулярными модифицирующими алкильными группами. Эту модификацию называют еще блокировкой концов. Большинство матриц для ВЖХ делают на основе силикагеля или органических полимеров. В случае силикагельных носителей большие трудности возникали из-за веществ, которые практически необратимо связывались со свободными силанольными группами, не заблокированными после пришивки алкильных групп. Вероятность такого связывания особенно велика для белков. Их десорбция при последующих разделениях может приводить к загрязнению препаратов. Благодаря усовершенствованию методов модификации матриц и модификации свободных силанольных групп негативное влияние [c.136]

    Синтез активированных носителей. Поверхностно-функционализирован-ные носители широко применяются в хроматографии, сорбции, катализе и т.д. Однако весьма часто встречается ситуация, когда необходимая функциональная группа не может быть привита непосредственной иммобилизацией на немодифици-рованный носитель. В таких случаях обычно пользуются методом поверхностной сборки, а предварительно модифицированный нужным образом кремнезем (или другую матрицу) называют активированным носителем. Остановимся подробнее на методах активации минеральных матриц. Для активации кремнеземных носителей используют следующую реакцию  [c.116]

    Развитие химии поверхностных соединений оказалось необходимым для разработки различных сорбентов или неподвижных фаз для высокоэффективной жидкостной хроматографии (ВЭЖХ). Собственно, появление химически модифицированных неорганических носителей сделало возможным создание ВЭЖХ как универсального и удобного метода разделения и определения веществ. В качестве матрицы для создания различных сорбентов неорганические носители отвечают всем основным требованиям ВЭЖХ, поскольку их отличает  [c.362]


Смотреть страницы где упоминается термин Носитель или матрица в хроматографии: [c.58]    [c.170]    [c.221]    [c.511]    [c.643]    [c.163]    [c.68]    [c.69]    [c.151]    [c.210]    [c.35]    [c.217]    [c.94]    [c.25]    [c.259]    [c.109]    [c.131]   
Физическая Биохимия (1980) -- [ c.173 , c.175 ]




ПОИСК





Смотрите так же термины и статьи:

Матрица

Хроматография на носителях



© 2025 chem21.info Реклама на сайте