Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Протеиназы механизм действия

    Каталитический механизм действия сериновых протеиназ 490 [c.9]

    Следует подчеркнуть, что в этом небольшом, казалось бы, химическом процессе - отщепление гексапептида от предшественника-заключено важное биологическое значение, поскольку при этом происходят формирование активного центра и образование трехмерной структуры трипсина, а известно (см. главы 1 и 4), что и белки биологически активны только в своей нативной трехмерной конформации. В том, что трипсин, как и другие протеиназы, вырабатывается в поджелудочной железе в неактивной форме, также имеется определенный физиологический смысл, поскольку в противном случае трипсин мог бы оказывать разрушающее протеолитическое действие не только на клетки самой железы, но и на другие ферменты, синтезируемые в ней (амилаза, липаза и др.). В то же время поджелудочная железа защищает себя еще одним механизмом-синтезом специфического белка ингибитора панкреатического трипсина. Этот ингибитор оказался [c.420]


    Известно несколько различных семейств протеиназ, причем не все они обязательно содержат в активном центре серин. В одно из семейств входит пепсин желудка и родственные ферменты, например реннин из четвертого желудка (сычуга) теленка. Реннин вызывает быстрое свертывание молока и широко применяется в сыроварении. К этому же семейству относятся некоторые внутриклеточные катепсины и протеиназы различных грибов. Необычным свойством пепсинового семейства протеиназ является то, что они наиболее активны в интервале pH от 1 до 5. Это свойство делает понятным, почему серин и гистидин не входят в состав активного центра этих ферментов. Считают, что у кислых протеиназ в механизме двойного замещения роль нуклеофила выполняет карбоксилат-ион, а донором протона по отношению к уходящей группе служит вторая карбоксильная группа. Таким образом, механизм действия пепсина подобен механизму действия лизоцима. [c.113]

    Другой весьма специфичный тип белок-белкового взаимодействия представлен ингибированием трипсина маленьким белковым ингибитором из поджелудочной железы быка. Последний белок состоит из 58 аминокислотных остатков, образующих весьма компактную структуру, содержащую три дисульфидных связи. Вследствие такой компактности белок не очень чувствителен к протеолитической атаке. Боковой радикал Lys-15, однако, полностью экспонирован и представляет собой участок взаимодействия с трипсином, а также его ингибирования. Обычный каталитический механизм действия сериновых протеиназ , представителем которых является трипсин, предполагает образование нековалентного комплекса, за которым следует ацилирование Ser-195 фермента карбонильной группой лизина или аргинина и высвобождение первого продукта реакции. Завершает процесс деацилирование ацилфермента. [c.563]

    Механизм действия сериновых протеиназ в настоящее время понят лучше механизма любого другого типа ферментов и может служить иллюстрацией некоторых важных моментов, касающихся ферментативного катализа. Гидролиз амида может показаться не слишком сложной реакцией химику-органику. В случае же ферментативного катализа для обеспечения успешного протекания реакции необходимо очень строгое обеспечение тех стадий, которые химик может счастливо игнорировать. В противном случае будет происходить замедление реакции. Даже механизм, приведенный на схемах (28) — (34) и насчитывающий 9 отдельных стадий, является, безусловно, упрощенным. [В качестве иллюстрации можно отметить, что в последних исследованиях механизма действия химотрипсина с использованием методов быстрой кинетики в водном диметилсульфоксиде при —90°С показано наличие четырех процессов, предшествующих образованию тетраэдрического интермедиата см. схему (28) . Первым из этих процессов является связывание субстрата, остальные, по-видимому, представляют собой индуцированные субстратом конформационные изменения в ферменте, необходимые для обеспечения правильной стереохимии катализа] [63]. Нетрудно понять, почему для катализа распада такой высоко энергетической частицы, как тетраэдрический интермедиат, требуется особое обеспечение такие стадии могут в конце концов быть скоростьопределяющими в самых простых реакциях. Однако в связи с тем, что для эффективного протекания ферментативного катализа необходимы очень [c.497]


    Как следствие метаболической перегрузки, обусловленной образованием избыточного количества чужеродного белка и нехваткой питательных веществ или строительных блоков — аминокислот, может произойти запуск стрессовых механизмов, в частности инициироваться синтез клеточных протеиназ, под действием которых произойдет быстрая деградация рекомбинантного белка. Истощение пула аминокислот может стать результатом эффективной экспрессии не только клонированных генов-мишеней, но и генов самого вектора, кодирующих маркеры устойчивости к антибиотикам. [c.128]

    Главные цели изучения биокатализа, по-видимому, можно ограничить следующими тремя. Во-первых, достижением понимания принципов стереохимического механизма ферментативного катализа и возможностью количественного описания, исходя из знания структур взаимодействующих молекул, каталитического акта как спонтанно протекающего, взаимообусловленного на всех своих стадиях непрерывного процесса. Во-вторых, выяснением в каждом конкретном случае причины специфичности фермент-субстратных и фермент-ингибиторных взаимодействий. В-третьих, целенаправленным конструированием наборов ингибиторов, обладающих наперед заданными свойствами. Возникающие при достижениях этих целей проблемы и возможные подходы к их разрешению будут подробно обсуждены в четвертом томе монографии "Проблемы белка". А сейчас попытаемся ответить на вопрос о том, что нового привнес рентгеноструктурный анализ в изучение аспартатных протеиназ и в какой мере знание трехмерных структур ферментов и их ингибиторных комплексов смогло углубить понимание механизма каталитической реакции аспартатных протеиназ. Ответ на этот вопрос имеет общее для энзимологии значение, поскольку, как отмечалось, протеиназы являются наиболее изученными во всех отношениях объектами биокатализа. Рассмотрим гипотетические модели механизма действия аспартатных протеиназ, в основу разработки которых были положены данные о трехмерных [c.98]

    Таким образом, разработанные схемы ферментативного катализа примечательны в том отношении, что они исходят, по существу, из одного и того же экспериментального материала, включающего данные рентгеноструктурного анализа, полученные в последние годы, и базируются на одних и тех же теоретических представлениях о природе биокатализа, сложившихся до становления кристаллографии белков и давно ставших традиционными. На несовершенство сделанных обобщений указывает то обстоятельство, что при единстве исходного опытного материала и теоретической основы, а также в рамках одного подхода была предложена не одна стереохимическая модель функционирования аспартатных протеиназ, а четыре различные модели, которых, впрочем, могло бы быть и больше. Они не образуют ряда, свидетельствующего о количественном развитии знаний о механизме действия ферментов, а скорее представляют собой букет различных точек зрения. Рассмотренные гипотезы отвечают одному уровню понимания изучаемого явления и равноценны как в своей аргументации, так и предсказательной силе. Что же привнесла нового в изучение каталитических реакций аспартатных протеиназ и других ферментов рентгеновская кристаллография белков  [c.104]

    HIV-1. Практически эта задача оказалась чрезвычайно сложной и на сегодняшний день нерешенной Среди требований, предъявляемых к свойствам ингибиторов, главное и самое трудновыполнимое касается избирательности их действия. Ингибиторы, обладающие терапевтическим эффектом, должны быть прежде всего высокоспецифичны до такой степени, чтобы дезактивируя ретровирусную протеиназу, не нарушать нормального функционирования как аспартатных, так и других протеолитических ферментов клетки-хозяина. Для целенаправленного поиска ингибиторов, удовлетворяющих этому требованию, необходимо располагать количественными данными о всех стадиях катализа вирусной протеиназы и механизмах функционирования протеиназ инфицированной клетки, а также владеть методом решения обратной структурной задачи, те конструирования химического строения ингибитора по заданной пространственной форме. Вероятность обнаружения таких ингибиторов экспериментальным или эмпирическим путем мала. Помимо того, что этот путь ненадежен, он чрезвычайно дорогостоящ и продолжителен На несовершенство используемого подхода, допускающего исследование только в направлении от функции к структуре, указывают разработанные схемы катализа аспартатных протеиназ. Они интересны в том отношении, что исходят по существу из одного и того же экспериментального материала, включающего данные рентгеноструктурного анализа и результаты многочисленных биофизических и биохимических исследований, а также базируются на одинаковых традиционных, теоретических представлениях о природе биокатализа. При единстве исходного опытного материала, теоретической основы и в рамках одного подхода были предложены пять различных стереохимических моделей функционирования аспартатных протеиназ, которых, впрочем, могло быть и больше [363-366]. [c.546]


    Другой подход к получению необходимых лекарств связан с созданием особых ингибиторов ретровирусных аспартатных протеиназ. Среди требований, предъявляемых к свойствам ингибиторов, главное и самое трудновыполнимое касается избирательности их действия. Ингибиторы, обладающие терапевтическим эффектом, должны быть, прежде всего, специфичными до такой степени, чтобы, дезактивируя ретровирусную протеиназу, не нарушать нормального функционирования как аспартатных, так и других протеолитических ферментов клетки-хозяина. Для целенаправленного поиска ингибиторов, удовлетворяющих этому требованию, необходимо располагать количественными данными о всех стадиях каталитического акта вирусной протеиназы, аналогичными сведениями о механизмах функционирования протеиназ инфицированной клетки и методом решения обратной структурной задачи, т.е. конструирования химического строения ингибитора по наперед заданной пространственной форме. В связи с проблемой специфичности фермент-субстратных взаимодействий особое значение [c.91]

    A. Ахунову и Д. H. Сахибову (1963, 1970) удалось получить гомогенную протекназу из яда гюрзы, причем, на последней стадии очистки (сефадекс Г-75 и ДЕАЕ-целлвдлоза) фермент обладал активностью, в 18 раз превышающий активность протеиназ цельного яда. Молекулярный вес энзима при гель-фильтрации через сефадекс Г-100 35000—37000. Полученный фермент по своим свойствам близок к трипсину, причем подавление его активности ДФФ (5.10 Щ) указывает на важную роль серина в механизме действия энзима. [c.87]

    Тироксины и трииодтиронин освобождаются из тиреоглобулина под действием ряда протеиназ. Как действие протеиназ, так и освобождение гормонов щитовидной железы в кровь стимулируется тиреотропным гор ] моном гипофиза (ТТГ). Этот тиреотропный гормон, подобно глюкагону, вероятно, использует в своем действии механизм, связанный с участие сАМР. Гормоны щитовидной железы разносятся по всему организму связывающим эти гормоны глобулином — специальным белком, выполН няющим транспортную функцию. Некоторые молекулы гормонов ne-j реносятся и другими сывороточными белками. Как тироксин, так я] хрииодтирриин оказывают мощное гормональное воздействие на ткани, но для трииодтиронина лаг-период ответной реакции короче, чем для  [c.146]

    Наиболее подробно изученная протеиназа, химотрипсин, существует в нескольких слегка различающихся формах, которые образуются в результате расщепления определенных пептидных связей в молекуле хи-мотрипсиногена. Последняя представляет собой единую полипептидную цепь, построенную из 245 аминокислот аминокислоты в активном ферменте обычно нумеруются в соответствии с их положением в исходном зимогсне. Важную роль в выяснении механизма действия химотрипсина сыграли данные, полученные при изучении ацетилхолинэстеразы. Было показано, что этот ключевой фермент нервной системы необратимо инактивируется группой сильных фосфорсодержащих ядов, используемых как инсектициды и как отравляющие газы нервно-паралитического действия. [c.107]

    Тот факт, что другая сериновая протеиназа, субтилизин, белок,, не обладающий структурной близостью к группе химотрипсина, содержит, тем не менее, тот же каталитический участок, явился ошеломляющим открытием. Из трехмерной структуры субтили-зина следует, что в последнем также имеется система водородных связей аспарагиновая кислота-32. .. гистидин-64. .. серин-221,. аналогичная найденной в химотрипсине [51] (см. рис. 24.1.14). Этот факт означает, что каталитические механизмы, используемые обоими этими ферментами, также идентичны. Отсюда, безусловно,, следует заключение, что две линии в эволюции ферментов пришли к одному и тому же решению проблемы гидролиза амидной связи. Если это заключение справедливо для сериновых протеиназ, оно может быть справедливо и для протеиназ, в механизмах действия которых участвуют другие аминокислотные остатки, и вообще для ферментов, катализирующих любую данную реакцию. Эти данные, таким образом, могут служить косвенным доказательством нашего предположения о том, что очень большое число-ферментов, участвующих в жизненных процессах, может использовать значительно меньшее число каталитических механизмов. [c.490]

    Механизм, используемый сериновыми протеиназами,— не единственное решение природой задачи гидролиза амидной связи. Ранее были упомянуты три других главных класса протеолитических ферментов каждый из трех различных типов их механизмов действия представляет особый интерес. [c.498]

    Современная, так называемая рациональная, химиотерапия (направленное применение лекарственных препаратов в медицине) должна основываться на точном знании механизма действия лекарственных средств на биосинтез ферментов, на активность уже синтезированных ферментов или на регуляцию их активности в организме. Иногда для лечения некоторых болезней используют избирательно действующие ингибиторы. Так, ингибитор ряда протеиназ (трипсина, химотрипсина и калликреина) трасилол широко применяется для лечения острого панкреатита—болезни, при которой уровень трипсина и химотрипсина в крови резко возрастает. Знание избирательного ингибиторного действия некоторых природных и синтетических соединений (так называемых антиметаболитов) на ферменты может служить методологической основой для разработки эффективных методов синтеза химиотерапевтических препаратов. Этот путь открывает широкие возможности для направленного воздействия на синтез ферментов в организме и регуляции интенсивности метаболизма при патологии. [c.148]

    Проферменты. Протеолитические ферменты пищеварительного тракта, а также поджелудочной железы синтезируются в неактивной форме—в виде проферментов (зимогенов). Регуляция в этих случаях сводится к превращению проферментов в активные ферменты под влиянием специфических агентов или других ферментов—протеиназ. Так, трипсин в поджелудочной железе синтезируется в форме неактивного трипсиногена. Поступив в кишечник, он превращается в активный трипсин в результате аутокатализа или под действием других протеиназ (механизм активации подробно рассматривается в главе 12). Превращение неактивного пепсиногена в активный пепсин происходит аутокаталитически в результате специфического ограниченного протеолиза в присутствии соляной кислоты и также связано с отщеплением от профермента специфического ингибитора пептидной природы. Эти превращения зимогенов в активные ферменты связаны с конформационными изменениями молекулы фермента и формированием активного центра или его раскрытием (демаскирование). Синтез протеиназ в неактивной форме и ряда других неактивных белков-пред-шественников имеет, очевидно, определенный биологический смысл, предотвращая разрушение клеток органов, в которых образуются проферменты. Примерами подобного активирования белков является активиро- [c.153]

    В последние годы внимание многих исследователей обращено к регуляторным пептидам в связи с открывшимися возможностями медицинского их применения в качестве лекарственных препаратов, имитирующих действие эндогенных регуляторов организма. Как уже было сказано, большой класс нейропептидов обладает анальгезирующим действием, причем изучены молекулярные механизмы действия многих регуляторных пептидов. Так, установлено, что анальгетическое действие р-эндорфина связано с освобождением метэнкефалина в мозге. Для решения основной проблемы применения регуляторных пептидов в качестве лекарственных средств, а именно быстрой их деградации в организме используют метаболически стабильные структурные аналоги, а также ингибиторы протеиназ, катализирующих распад полипептидов до аминокислот. Эти ингибиторы, блокирующие также распад эндогенных энкефалинов, представляют собой особый класс анальгетиков смешанного типа. [c.28]

    Хольцер [2012] описал несколько протеиназ дрожжей, различающихся по специфичности и механизму действия и, по-видимому, ответственных за внутриклеточную деградацию белков. Были обнаружены пептиды, которые специфически ингибируют эти три фермента [2013]. Указанные протеиназы локализованы в вакуолях и, следовательно, изолированы от своих субстратов. Контроль процессов деградации би,лка может осуществляться в этом случае путем изменения кондентрации ингибиторов протеиназы (через изменение скорости их синтеза или распада) или самих протеиназ. В регуляции времени полуобновления ферментов эти эффекты следует рассматривать как дополнительные к способности субстрата подвергаться превращениям и компартментализации фермента и субстрата. [c.117]

    Структура аспартатной протеиназы HIV-1. Интерес к механизму действия аспартатных протеиназ особенно возрос в последнее время в связи с обнаружением ферментов этой группы у ретровирусов, вызывающих в организмах человека и животных такие болезни, как aids, некоторые виды лейкозов, сарком и онкоопухолей молочных желез. Самое важное здесь заключается в установлении того факта, что ставшие известными аспартатные протеиназы этих вирусов играют ключевую роль в их жизненных циклах. В клетке-хозяине они гидролизуют белки ядерных капсид, окружающих вирусные РНК, расщепляют полибелковые цепи на зрелые структурные белки и ферменты, участвующие в репликации ретровирусов. Вирусные протеиназы в состоянии также гидролизовать белки инфицированных клеток, нарушая тем самым целостность их структурно-функциональной организации. В то же время клеточные протеолитические ферменты не обладают способностью расщеплять вирусные протеиназы и выполнять их функции. Таким образом, в отсутствие протеиназ или при их ингибировании вирусы иммунодефицита человека (HIV-1, ШУ-2) и обезьяны (SIV), а также опухолеродные вирусы не смогли бы приобретать инфекционные формы. По этой причине протеиназы ретровирусов стали объектами пристального внимания энзимологов и медиков. [c.85]

    Указанные свойства качественно очень близки соответствующим свойствам сериновых протеиназ, и механизмы катализа этими ферментами также очень близки. Данные рентгеноструктурного анализа показывают, что Н5-группа в активном центре папаина контактирует с имидазольной группой остатка гистидина на противоположной стороне впадины (гистидин-159), связанного водородной связью через удаленный кольцевой атом азота с амидной группой аспарагина-175. Так как амидная группа в мягких условиях не может действовать в качестве общего основания, близость в строении активных центров химотрипсина и папаина не дает все же возможности предложить и для последнего полную систему переноса заряда, однако принятый механизм [71], кратко суммированный на схеме (37), все же мало отличается от приведенного выше меха низма действия химотрипсина см. схемы (28) —(34) . [c.499]

    Таким образом, в результате деятельности разнообразных пептидгидролаз (протеиназы и пептидазы) из белков в процессе их гидролиза сначала образуются сложные смеси различных пептидов, а затем смесь свободных белковых аминокислот. Последние являются конечным продуктом гидролиза белков. Механизм действия пептидгидролаз в ряде случаев изучен детально. Этр касается, например, механизма действия химотрипсина,- упрощенная схема которого представлена на рис. 89. [c.262]

    Книга посвящена одной из наиболее актуальных проблем современной биохимии. В сжатой форме и вместе с тем ясно и четко изложены современные данные о структуре и механизме действия большого числа ферментов, рассмотрены общие принципы ферментативного катализа. Подробно описаны методы определения скорости ферментативных реакций. Последний раздел книги посвящен строению и функции отдельных ферментов — дегидрогеназ, протеиназ, иуклеаз и других. [c.4]

    Антитромбин — главный компонент противосвертывающей системы примерно У4 всего тромбина удаляется этим ингибитором. Однако в плазме крови имеются и другие ингибиторы протеиназ, которые также могут уменьшать вероятность внутрисосудистого свертывания крови. Отметим один из них — а -макрогло-булин. Это крупный белок с молекулярной массой 720 ООО, построенный из четырех идентичных субъединиц. Он ингибирует многие протеиназы, и не только те, которые участвуют в свертывании крови. Интересен механизм действия [c.514]

    Каковы же ближайшие перспективы Можно ли, продолжая изучение Met- и Ьеи-энкефалинов и других пептидных гормонов в том же плане, получить со временем полную и объективную количественную информацию об их структурной организации и зависимости между структурой и функцией Чтобы ответить на этот вопрос, предположим, что такой информацией мы уже располагаем, и попытаемся представить, что она могла бы дать для понимания структурно-функциональной организации энкефалинов и описания механизмов их многочисленных функций. Как можно было бы логически связать данные, например, о 10 низкоэнергетических конформациях каждого нейропептида с приблизительно таким же количеством его функций Очевидно, установить прямую связь при неизвестных пространственных структурах рецепторов не представляется возможным. Число возможных комбинаций, особенно если учесть существование нескольких рецепторов (ц, а,5) для осуществления только одной опиатной функции энкефалина, слишком велико, чтобы надеяться даже в гипотетическом идеальном случае найти искомые соотношения интуитивным путем. Многие полагают, что к достижению цели ведет косвенный путь, заключающийся в привлечении синтетических аналогов, изучении их структуры и биологической активности. В принципе подобный подход вот уже не одно столетие применяется в поиске фармацевтических препаратов. Однако такой путь в его сегодняшнем состоянии не только длителен, сложен и дорогостоящ, но, главное, он не может привести к окончательному решению проблемы. Замена аминокислот в природной последовательности, укорочение цепи или добавление новых остатков, иными словами, любая модификация химического строения природного пептида, неизбежно сопровождается изменением конформационных возможностей молекулы и одновременно затрагивает склонные к специфическому взаимодействию с рецептором остатки, что сказывается на характере внутри- и межмолекулярных взаимодействий, в том числе на устойчивости аналогов к действию протеиназ. Для учета последствий химической модификации на характер внутримолекулярных взаимодействий можно использовать теоретический конформационный анализ и методы кванто- [c.352]

    Согласно современным представлениям, биосинтез инсулина осуществляется в 3-клетках панкреатических островков из своего предшественника проинсулина, впервые выделенного Д. Стайнером в 1966 г. В настоящее время не только выяснена первичная структура проинсулина, но и осуществлен его химический сгштез (см. рис. 1.14). Проинсулин представлен одной полипептидной цепью, содержащей 84 аминокислотных остатка он лишен биологической, т.е. гормональной, активности. Местом синтеза проинсулина считается фракция микросом 3-клеток панкреатических островков превращение неактивного проинсулина в активный инсулин (наиболее существенная часть синтеза) происходит при перемещен проинсулина от рибосом к секреторным гранулам путем частичного протеолиза (отщепление с С-конца полипептидной цепи пептида, содержащего 33 аминокислотных остатка и получившего наименование соединяющего пептида, или С-пепти-да). Длина и первичная структура С-пептида подвержена большим изменениям у разных видов животных, чем последовательность цепей А и В инсулина. Установлено, что исходным предшественником инсулина является препроинсулин, содержащий, помимо проинсулина, его так называемую лидерную, или сигнальную, последовательность на N-конце, состоящую из 23 остатков аминокислот при образовании молекулы проинсулина этот сигнальный пептид отщепляется специальной пептидазой. Далее молекула проинсулина также подвергается частичному протеолизу, и под действием трипсиноподобной протеиназы отщепляются по две основные аминокислоты с N- и С-конца пептида С—соответственно дипептиды Apr—Apr и Лиз— —Apr (см. рис. 1.14). Однако природа ферментов и тонкие механизмы этого важного биологического процесса—образование активной молекулы инсулина окончательно не выяснены. [c.268]

    После определенного времени функционирования (для разньгх белков оно составляет от нескольких минут до нескольких недель и даже месяцев) белки подвергаются протеолитической деградации. Механизмы деградации различны, они зависят от типа белков, их расположения в том или ином компартменте и от протеолитического потенциала клетки или ткани. Например, в клетках свободные белки деградируют в два этапа. Функционирование белков связано, как правило, с изменением их структуры и релаксацией к исходному состоянию. По мере биологического действия накапливаются некоторые изменения структуры, которые релаксируются не полностью, в результате происходит старение белков. Изменение структуры является сигналом для атаки цитоплазматических, сериновых протеиназ, которые разрывают полипептидные связи или вырезают некоторые аминокислотные последовательности. Частично деградированный белок поступает в лизосомы, где происходит его полная деградация. Иногда сигналом для протеолитической атаки служит присоединение к старому белку низкомолекулярных полипептидов, например убиквитина. [c.470]

    Свертывание крови по внешнему пути осуществляется весьма быстро ( 12 с). Лри повреждении кровеносного сосуда и окружающей ткани в кровь высвобождается тканевый фактор липопротеиновой природы, действующий как белок-модификатор. Он вызывает активацию фактора VII (проконвертина) и образование соответствующей протеиназы Vila (впоследствии этот процесс резко усиливается тромбином по механизму обратной связи), а совместное действие тканевого фактора и фактора Vila приводит к инициации основного звеиа процесса свертывания крови XХа — и т. д. [c.233]

    Что касается механизма синтеза белка из отдельных аминокислот, то здесь наши сведения отличаются крайней недостаточностью. Было высказано предположение о возможности осуществления этого синтеза также под влиянием протеиназ. Эта точка зрения основывается на примерах обратимости ферментативного действия. Из нее следует, что катепсины могут не только гидролизовать белок на аминокислоты, но и ресинтезировать из них белок. В выдающихся исследованиях А. Я- Данилевского эти представления были впервые сформулированы и обоснованы экспериментально. [c.326]

    Предполагается, что изменение первичной структуры, вызванное отщеплением активационного пептида (гексапептида), вызывает изменение конформации молекулы и образование каталитически активного участка трипсина. Последний ускоряет превращение Т. в трипсин, т. е. активация носит автоката-литич. характер. Активация Т. может происходить и при действии других ферментов, напр, протеиназы из Peni illium. Механизм активации при этом остается тем же. В последние годы подробно исследована первичная структура Т., а вместе с тем и трипсина. [c.134]

    В настоящее время ферментативные процессы широко используются в различных отраслях промышленности. В хлебопекарном производстве для ускорения гидролиза крахмала и улучшения качества теста используют амилазы. При приготовлении детской пищи с целью облегчения переваривания углеводов и белков исходные продукты обрабатывают амилазой и протеиназами. Протеиназы и пектиновые ферменты используются в виноделии и при приготовлении соков. Они способствуют ускорению сокоотделения и осветлению сока. В сыроварении используют ренин или химозин, образующийся в сычуге — четвертом отделе желудка телят и ягнят молочного возраста. Амилазы используются в текстильном производстве для расшлихтовки хлопчатобумажного волокна (удаление примесей крахмала) перед отбеливанием и крашением. Для придания любимым всеми джинсам благородного потертого вида деним (джинсовую ткань) подвергают биохимической обработке амилазой и целлюлазой. Механизм ферментативной обработки денима аналогичен тому, который имеет место при ферментативном гидролизе крахмала, ведь целлюлоза (основная составляющая хлопкового волокна), как и крахмал, относится к классу полисахаридов. Причем ферменты начинают действовать с поверхностных волокон, которые окрашены индиго, в результате связь этих волокон с поверхностью ткани ослабевает, и постепенно на ткани образуются белые участки. Специфические протеиназы применяются в кожевенной промышленности с целью мягкого удаления волос с кожи, в технике — при регенерации кинопленки. Щелочные протеазы наряду с липазами используют при производстве синтетических моющих средств. [c.122]

    Регуляция действия панкреатических протеиназ осуществляется энтеропептидазой, секретином и холецистокинином. Именно открытие секретина в 1902 г. [29] привело к введению термина гормон для обозначения молекулы, влияющей на метаболизм не той клетки, в которой она была синтезирована, а других 1Ц1еток. Однако механизмы, благодаря которым секретин и холецистокинин стимулируют экзоци  [c.44]


Смотреть страницы где упоминается термин Протеиназы механизм действия: [c.545]    [c.514]    [c.448]    [c.84]    [c.99]    [c.101]    [c.103]    [c.545]    [c.54]    [c.218]    [c.157]    [c.218]    [c.86]    [c.137]    [c.103]    [c.46]   
Ферменты Т.3 (1982) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Механизм действия



© 2024 chem21.info Реклама на сайте