Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки участками ДНК

    ДОМЕН В МОЛЕКУЛЕ БЕЛКА. Участок аминокислотной последовательности, связанный с определенной функцией. [c.521]

    Ничто лучше не иллюстрирует принципов сборки белков в ансамбли, чем строение мышц и организация цитоскелета. Молекулы белка, участок связывания которого комплементарен другому участку его собственной поверхности, могут самопроизвольно собираться в комплексы. Образующаяся структура в зависимости от геометрии и взаимного расположения комплементарных участков может быть либо кольцевой (простейший случай-димер), либо спиральной. Эти простые комплексы в свою очередь могут взаимодействовать друг с другом за счет все того же принципа комплементарного связывания, образуя более сложные структуры. Возникшие таким путем комплексы обладают свойством геометрической симметрии, которая вытекает из способа их построения. Вообще биологическая симметрия довольно проста для понимания, хотя многие и считают ее необъяснимой и даже несколько пугающей. Как бы то ни было, отмеченные принципы симметрии позволяют создать концептуальную основу для анализа биологических структур. [c.195]


    Наиболее важный класс глобулярных белков образуют биологические катализаторы, ферменты. Они характеризуются каталитическим механизмом, позволяющим им ускорять достижение конкретной реакцией состояния термодинамического равновесия, а также специфичность к субстрату, благодаря которой они способны делать выбор между потенциальными молекулами субстратов, воздействуя на одни из них и отказываясь воздействовать на другие. Участок поверхности фермента, на котором происходит катализ, называется активным центром. Механизм катализа может осуществляться при помощи заряженных групп, доноров и акцепторов электрона или протона, а также при помощи атомов металла в активном центре фермента. Избирательность ферментов обусловливается формой их поверхности и характером взаимодействия с субстратом, например водородной связью, электростатическим взаимодействием или гидрофобным притяжением. Фермент и его субстрат соответствуют друг другу по форме и размеру, как ключ и замок. [c.339]

    Образованию весьма прочных многоточечных (хелатных) комплексов способствует то, что полипептидные цепи белка и особенно боковые группы аминокислотных остатков, находящихся в поверхностном слое, не зафиксированы слишком жестко и обладают определенной подвижностью (гибкостью). В результате обеспечивается возможность пространственной настройки отдельных сорбционных участков глобулы на соответствующие (связываемые ими) фрагменты сорбируемой молекулы. Иными словами, сорбционный участок глобулы в принципе способен принять конфигурацию, несколько отличную от равновесной [c.23]

    Функциональная роль отдельных экзонов при рассмотрении случаев альтернативного сплайсинга, возможно, прояснится на примере гена позвоночных, кодирующего полипептидные компоненты целой серии гликопротеидов — фибронектинов, секретируемых клеткой. Некоторые типы фибронектинов, являясь компонентами внеклеточного матрикса, связываются с клеткой и определяют свойства ее поверхности, другие находятся в плазме крови. Разные типы фибронектинов образуются путем альтернативного сплайсинга. Фибронектин плазмы, который не связан с клеточной поверхностью, синтезируется на мРИК, не содержащей одного из экзонов, возможно как раз того, который кодирует участок молекулы белка, отвечающий за связывание с клеткой. [c.183]

    Первичная структура белка, т. е. последовательность аминокислотных остатков в полипептидных цепях, уже обсуждалась в разд. 14.3. Термин вторичная структура используют для обозначения тех простейших способов, при помощи которых полипептидные цепи скручиваются или складываются в молекулах белков. Наиболее важные вторичные структуры —а-спираль и два вида структуры, которую называют структурой типа складчатого слоя. (Третичная структура включает вторичные структуры и те фрагменты полипептидной цепи, которые соединяют один участок вторичной структурой с другим четвертичная струк- [c.428]


    N-концевой (остатки 1-92), взаимодействующий с ДНК, и С-концевой домен (остатки 132-236), ответственный за контакт с С-концевым доменом второй субъединицы белка. Участок цепи с 93 по 131 остаток образует перемычку между двумя функциональными доменами, на которой расположен участок атаки протеиназы Re A. В активной форме белок с1 представляет собой димер, структура которого поддерживается нековалентными взаимодействиями между С-концевыми доменами двух субъединиц. Оба N-концевых домена связываются кооперативно с палиндромными последовательностями каждого из трех участков 0 7, 0 2 и О З. При индукции протеиназа Re A расщепляет полипептидную цепь на участке между доменами. В результате этого нарушается кооперативность связывания, что проявляется в значительном снижении сродства индивидуальных N-концевых доменов к центрам связывания в операторной области. [c.189]

    Клеточные рецепторы принадлежат к числу мембранных белков. Участок молекулы рецептора, пронизывающий цитоплазматическую мембрану, построен из неполярных аминокислот, в силу чего между (П1м и липидныуп компонентами мембраны осуществляются гидрофобные взаимодепствия. Помимо них рецепторные белки образуют в ряде случаев ковалентные сложноэфирные связи с остатками фосфорной кислоты фосфолипидов мембраны (рис. 1). Тесная связь рецепторного белка с клеточной мембраной диктует необходимость использования для выделения рецепторов солюбилизирующих мембрану детергентов. С целью дополнительной очистки в ряде случаев прибегают к удалению из препаратов рецепторных белков ковалентно присоединенных к ним комг-оиентов клеточной мембраны. [c.8]

    Для количественных определении вырезают из ацетилцеллюлозной полосы окрашенные амидочерным фракции НЬАз и НЬА, помещают их в отдельные пробирки и добавляют 80% уксусную кислоту — по 4 мл в пробирку с НЬАг и в контрольную пробу —. и 20 мл в пробирку с НЬА. Контролем служит свободный от белка участок той же ацетилцеллюлозной полосы, по размеру соответствующей зоне НЬАг. Пленка из ацетата целлюлозы полностью растворяется в 80% уксусной кислоте. Содержимое пробирок тщательно перемешивают сначала стеклянной палочкой, потом опрокидывая пробирку, и затем фотометрируют против контроля на спектрофотометре СФ-4 при длине волны 610 нм. Расчет проводят по формуле  [c.246]

    Некоторые рс-мутации репрессора Р22 затрагивают сам С-конец узнающей спирали, а другие (если исходить из соображений о структурной гомологии белков) - участок поблизости от С-конца. Отсюда следует, что оба белка, осуществляюпщх позитивную регуляцию, должны связываться с одной и той же поверхностью РНК-полимеразы, но участвуют в этом разные поверхности репрессоров (рис. 4.30). По всей вероятности, существенно, что все пять выделенных к настоящему времени рс -мутаций у репрессоров X и Р22 состоят в замене аминокислоты в белке дикого типа на более оснбвную аминокислоту (при этом увеличивается положительный заряд). [c.127]

    Показано, что цепочка и-РНК может нести информацию о нескольких молекулах белка. Участок и-РНК, несущий информацию для одного белка, носит название цистропа. Таким образом, и-РНК может быть полицистронной. Большое значение имеет объединение рибосомы в цепочки — полисомы. В этом случае одна молекула и-РНК может последовательно присоединяться к ним и служить матрицей для синтеза нескольких одинаковых молекул белка. Когда синтез белка закончен, и-РНК распадается. [c.38]

    В общем случае значение а — это характеристика сорбционной способности активного центра данного фермента. Если а <С 1 (как, например, в рассмотренном катализе (3-галактозидазой), то субстратная группа К, по-видимому, либо погружаетгя (переносится из воды) в органическую среду белка не полностью, либо связывание ее требует термодинамически невыгодных затрат на конформационное изменение структуры того или другого реагента. Гидрофобное ферментсубстрат-ное взаимодействие может быть термодинамически более выгодным, чем это предполагает простая экстракционная модель (где а= 1). В этом случае активный центр должен содержать локальный участок с относительно невыгодной поверхностной энергией пограничного слоя белок — растворитель например, с гидрофобными боковыми группами [c.44]

    Можно думать, что участие ДНК-гиразы в инициации необходимо не только для того, чтобы облегчить белку DnaA задачу расплетания ориджина, ио и для проверки целостности цепей ДНК — будущих матриц для синтеза действительно, сверхспирализовать Какую-либо кольцевую ДНК (или участок ДНК, концы которого фиксированы) можно лишь в том случае, если эта ДНК не содержит разрывов. [c.61]

    Несколько отличный путь используется для репарации повреждений ДНК, заметно нарушающих структуру молекулы, например пиримидиновых димеров, образующихся под действием ультрафиолета. Такие повреждения удаляет специальный фермент — эндонуклеаза иугАВС (в темноте, когда не работает фотолиаза или когда повреждений в ДНК очень много), а нуклеаза разрывает фосфо-днэфирные связи с 5 - и с З -конца от поврежденного участка, а затем с помощью белка иугО, хеликазы И, поврежденный участок удаляется сопряженно с гидролизом АТР. Образующуюся брешь застраивает ДНК-полимераза I (рис. 46). [c.78]


    Степень индукции SOS-системы в определенном смысле отражают благополучие клетки и ее шансы на выживание. Поэтому некоторые относительно автономные внутриклеточные генетические элементы, например умеренные бактериофаги, используют индукцию SOS-системы в качестве сигнала для размножения и уничтожения клетки-хозяина безвредный до того участок хромосомы (профаг, см. гл. ХП1), почувствовав слабость хозяина, начинает размножаться и уничтожает его, чтобы спастись самому. Для фага лямбда показано, что чувствительность к состоянию индукции SOS-системы объясняется тем, что репрессор фага устроен аналогично белку LexA и самораскусывается , связавшись с активированным КесА-белком. [c.81]

    ИЗ цепей ДНК дефектна (например, содержит тиминовый димер или АР-сайт), а комплементарная цепь не могла быть синтезирована из-за дефекта в матрице и поэтому напротив поврежденного участка остается незастроенная брешь (см. рис. 47). Единственный способ безошибочной репарации такого повреждения — это использовать в качестве эталона второй полученный при репликации дуплекс ДНК. т. е. использовать рекомбинацию для репарации повреждения. У Е.соН эту задачу способен выполнить Re A-белок вместе с ферментами репарации. Для НесА-белка одноцепочечный участок двуспиральной молекулы ДНК, содержащий повреждение, является излюбленным участком связывания. Связавшись с таким местом, Re A-6e-лок вовлекает его в рекомбинационное взаимодействие с гомологичным неповрежденным дуплексом, причем как разорванная, так и поврежденная цепи ДНК оказываются спаренными с неповрежденными комплементарными цепями, что позволяет их репарацию описанными в предыдущей главе репарационными системами (рис. 62). Таким путем осуществляется пострепликативная, или рекомбинационная, репарация. Аналогичным образом за счет рекомбинации происходит репарация двуцепочечных разрывов ДНК. [c.94]

    Основной элемент промотора —. место связывания РНК-полимеразы, которое она занимает перед началом синтеза РНК- В состав промоторов могут входить также участки связывания белков-регуляторов. Размер участка связывания РНК-па1и.меразы соответствует ее длине и составляет примерно 70 п. н. Располагается этот участок относительно стартовой точки несимметрично по ходу транскрипции его граница отстоит от стартовой точки на 20 п. н,, а против хода — при.мерно на 50 п. н. (рнс. 85). [c.140]

    Простейший механизм репрессии заключается в стерическом блокировании репрессором присоединения РНК-полимеразы к промотору. Такой механизм имеет место в тех промоторах, в которых участок связывания репрессора перекрывается с участком связывания РНК-полимеразы. Простейший механизм активации заключается в том, что белок-активатор присоединяется к про.мотору рядом с РНК-полнмеразой и за счет непосредственного контакта с ней облегчает образование открытого промоторного комплекса. Дискуссионными являются механизмы действия тех белков-регуляторов, которые присоединяются к ДНК на значительном расстоянии от РНК поли-меразы. Ниже рассмотрено несколько наиболее хорошо изученных примеров, иллюстрирующих различные принципы регуляции промоторов. [c.144]

    Было высказано предположение, что экзоны кодируют определенные автономные элементы укладки полипептидной. цепи, представляющие собой функциональные сегменты белковой молекулы, которые сортируются в процессе эволюции. Если процессы такой перетасовки генетического материала, механизмы которых не рассматриваются, идут по районам интронов, то структура экзонов не изменяется и, следовательно, не нарушаются функциональные свойства отдельных белковых доменов. Экзоны могут соответствовать участкам доменов или отдельным белковым доменам, т. е. тем участкам белковой молекулы, которые можно выделить как пространственно делимые структуры, обладающие определенной биологической функцией. Установление раз.меров экзонов во многих генах показало, что главный класс экзонов имеет раз.меры около 140 п. и., что соответствует 40—50 а. о. в молекуле белка. Большая часть белковых доменов, содержащих в среднем 100—130 а. о., складывается из нескольких элементов вторичной структуры ( су-первторичных структурных единиц), кодируемых отдельными экзонами. М-терминальный участок из нескольких гидрофобных аминокислот (сигнальный пептид) секреторных белков, как правило, также кодируется отдельным экзоном. [c.192]

    Благодаря использованию большого набора мутаций по промоторам и генам активирующих белков дрожжей удалось выяснить некоторые особенности взаимодействия белков-активаторов с АП, а также характерные свойства этих белков. Белок GAL4 активирует гены, необходимые для катаболизма галактозы. GAL4 связывается с АП, представленной повторяющимися элементами по 17 п. н-Степень активирующего действия пропорциональна числу этих элементов в промоторе. Функция связывания ДНК и активации транскрипции принадлежит разным участкам белка GAL4, который содержит 881 аминокислоту. 73 остатка с N-конца молекулы белка достаточны для обеспечения специфического связывания с ДНК. Эгот участок связывает ионы цинка и содержит характерную структуру — цинковые пальцы , обнаруженные в целом ряде белков, активирующих транскрипцию (см. раздел 4 этой главы). Два других дискретных участка белка, включающих аминокислоты 149—196 и 768—881, достаточны для обеспечения активации транскрипции. Эти участки содержат кислые аминокислотные остатки. По-видимому, в разных активаторных белках эти районы обладают [c.196]

    В ней выделяются районы А и Б. Волнистой чертой отмечена после довательность, необходимая для экспрессии разных генов, кодирующих белки, индуцируемые в условиях теплового шока. Гены, к которым присоединяют этот участок промотора, начинают также активно экспрессироваться при тепловом шоке. В промоторных районах А и Б гена теплового шока дрозофилы подчеркнуты повторяющиеся четырехнуклеотидные мотивы T G и GTT . Наличие района Б необходимо для полной экспрессии гена. Элементы А и Б, взаимодействующие с белковыми факторами транскрипции, имеют сходные функциональные свойства и обладают синергическим действием, активируя транскрипцию. Гены теплового шока дрозофилы, введенные в клетки млекопитающих, начинают активно экспрессироваться при повышении температуры. Это говорит о том, что не только сами гены теплового шока, но и регуляторные компоненты этой системы генов достаточно консервативны в эволюции. [c.200]

    Принципы действия энхансеров, способных оказывать свое влияние на значительном расстоянии (более чем тысячи нуклеотидных пар) и вне зависимости от ориентации по отношению к старту транскрипции, не выяснены. Короткие нуклеотидные блоки могут служить центрами связывания специфических ядерных белков, выступающих как транс-действующие факторы. Сила энхансера, вероятно, может зависеть от числа таких блоков (модулей). Обсуждаются следующие два основных механизма действия энхансеров. Считается, что функциональные участки генома, содержащие один или несколько генов, образуют длинные петли, включающие десятки тысяч нуклеотидных пар ДНК. Высказано представление, что петли закреплены в матриксе клеточного ядра и могут быть сверхспира-лизованы. В состав матрикса входит топоизомераза И, по-видимому, определяюш,ая топологию петли ДНК (см. гл. ХП), В таком случае взаимодействие энхансера с бе.1ками может менять конформацию всей петли, включая и удаленный от энхансера участок ДНК, в результате чего в составе петли изменяется локальная структура хроматина и облегчается транскрипция гена (рис. 112,6). Более вероятно, что влияние энхансера, связанного с белком, определяется его непосредственным взаи.чодействием с РНК-полимеразой и другими факторами транскрипции в процессе инициации- Такое взаимодействие может осуществляться благодаря сгибанию молекулы ДНК, что создает возможность непосредственного контакта районов промотора и удаленного от него энхансера, связанных со специфическими белками (рис. И2, в). [c.204]

    Во всех трех случаях первая затравка для синтеза —) цепи образуется на совершенно определенном участке фагового генома, разном у разных фагов. Соответствующий участок, очевидно, содержит сигналы в виде последовательности нуклеотидов и элементов вторичной структуры, которые специфически узнаются соответственно РНК-полимеразой (в ДНК фага М13), праймазой (у G4) и полипептидом п (у срХ174). Подчеркнем, что в разобранных случаях матрицей для образования затравки является не голая ДНК, а дезоксирибонуклеопротеид, образованный в результате взаимодействия ДНК с ДНК-связывающим белком Е. oli. [c.263]

    Для образования первой затравки на молекуле ДНК SV40 необходимо присоединение к ori вирус-специфического белка — так называемого большого Т-антигена, который выполняет функции хеликазы, Взаи.модействие между ori и специфическими белками создает необходимые условия для синтеза затравки ферментами, которые умеют это делать, обычно праймазой. Однако в некоторых системах (в частности, у того же фага л) требуется дополнительное активирование оп. Эта цель может достигаться, например, тогда, когда в участке ori происходит транскрипция. Для такой транскрипционной активации важен именно сам акт транскрипции, а не ее продукты — РНК или белки. Считается, Что в процессе транскрипции ослабляется связь между комплементарными цепями когда такое ослабление захватывает участок ori. Он становится более доступным для праймазы. [c.265]

    Последующие события в схематическом виде представляются следующим образом (рис. 151 . Участок фаговой ДНК со сближенными концами контактирует с каким-либо участком клеточной хромосомы, причем это может быть любой (или почти любой) участок клеточной ДНК. Далее под действием вирус-специфических белков происходит рекомбинация. В обе цепи клеточной ДНК на расстоянии пяти нуклеотидов вносятся однонитевые разрывы кроме того, однонитевые разрывы вносятся в вирусную ДНК — по границе между Ь- и К-концами и вирус-специфическими последовательностями. При этом выступающие 5 -концы клеточной ДНК ковалентно соединяются с З -концами вирус-специфической ДНК. Старые Ь- и К-концы фаговой ДНК удаляются, и после репарации брешей фаговый геном оказывается встроенным в клеточную хромосому и окруженны.м вновь появившимся повтором клеточной ДНК длиной 5 п. н. Возможны две разные ориентации профага относительно клеточных генов расположение генов в профаге н в ДНК вирусной частицы одинаково. [c.287]

    Необычной особенностью репликации ДНК фага Ми является то, что, во-первых, все вновь синтезированные копии фагового генома оказываются в состоянии профага (т. е. включены в клеточную хромосому) и, во-вторых, фагоспецифическая последовательность нуклеотидов, которая послужила матрицей для образования дочерних геномов, остается в клеточной хромосоме на том же месте, где она находилась до репликации. Другими словами, репликация идет без выщепления резидентного профага и, по существу, представляет собой репликативную транспозицию. Вероятная схема этого процесса представлена на рис. 152. Фагоспецифические белки обеспечивают сближение концов профага, интегрированного в клеточную хромосому (аналогично тому, как они это делают с проникшей в клетку молекулой ДНК фага). Участок хромосомы, в котором сближены концы прсфага, контактирует с другим участком этой же хромосомы или с какой-либо другой находящейся в клетке молекулой ДНК. В этом свежем участке появляется ступенчатый разрыв (два однонитевых разрыва на расстоянии 5 п. н.) возникают однонитевые разрывы и по обеим границам резидентного профага. Выступающие 5 -концы клеточной ДНК соединяются с З -концами вирус-специфических последовательностей, а З -концы клеточной ДНК выполняют роль затравки. Таким образом, инициация раунда репликации представляет собой в этом случае вариант рекомбинационной инициации- В результате Полуконсервативной репликации и последующих процессов репарации в клеточной хромосоме оказывается две копии профага в каждой из них одна чз цепей пронсходнт из резидентного профага, а вторая синтезирована заново. При повторении этого процесса Количество профагов в клеточной хромосоме может достигать сотни. [c.287]

    ГЕН, участок молекулы ДНК (у нек-рых вирусов — РНК), в к-ром закодирована информация, обеспечивающая развитие определ. признака (св-ва) у данного организма и его передачу в ряду поколений. Участки нуклеиновой к-ты, кодирующие аминокислотную последовательность белков нли последовательность оснований транспортных и рибо-сомных РНК, наз. структурными Г. Последние вместе с необходимыми для их функцион. выражения регуляторными участками объединяются в более сложные генетич. еднинцы — опероны. Многие Г. высших организмов имеют прерывистое строение кодирующие части гена (зкзоны) чередуются с некодирую1цими вставками (интронами). в Стен т Г. С., Молекулярная -енетыка, пер. с англ.. М., 1974, [c.125]

    Участок молекулы Ф., где происходит превращ. субстрата, наз. активным центром. Его иногда подразделяют на участок, связывающий субстрат, и каталитич. участок. Последний содержит каталитически активные группы белка или кофакторы. Для многих Ф., состоящих из субъединиц, характерно наличие регуляторного участка (взаимодействующего с в-вами, регулирующими активность фермента), к-рый м. б. расположен не на той субъединице белка, где находится активный центр. [c.618]

    ВЫЧИСЛЯЛОСЬ значение д, аналогичное описанному выше для отдельной аминокислотной позиции. Причем признаки и д вычислялись по краям участка, а Д(п- по центральной области. Если этот участок имел д < р (где Р -некоторый порог), то он искле-ча юя из расчета и рассматривался следупций фрагмент белка, смещенный вправо на одну позицию. При д > р участок расширялся в обе стороны за счет последовательного включения в него по одной позиции с одного из краев. На этих участках рассчитывались и фрагмент белка с максимальной д считался потенциальной о-спиральп. Дальнейиий поиск осуществлялся за с-концом этой спирали. Аналогичная процедура выполнялась и для Р-структур. Блок-схема алгоритма расчета вторичной структуры белков приведена на рис.З. [c.122]


Смотреть страницы где упоминается термин Белки участками ДНК: [c.309]    [c.434]    [c.137]    [c.281]    [c.137]    [c.281]    [c.79]    [c.89]    [c.112]    [c.149]    [c.162]    [c.217]    [c.253]    [c.255]    [c.293]    [c.295]    [c.309]    [c.324]    [c.410]    [c.114]    [c.236]    [c.243]   
Гены и геномы Т 2 (1998) -- [ c.82 , c.87 , c.111 ]




ПОИСК







© 2025 chem21.info Реклама на сайте