Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сепарация

Рис. 43. Явление сепарации при наполнении и опорожнении Рис. 43. Явление сепарации при наполнении и опорожнении

    В некоторых условиях частицы широкого гранулометрического состава могут высыпаться из бункера весьма неравномерно. Это происходит вследствие того, что мелкие частицы задерживаются непосредственно над точкой высыпания, тогда как более крупные частицы скатываются вниз по наклонной плоскости и скапливаются у периферии (рис. 43, 1). Такая сепарация имеет место при наполнении аппарата. [c.66]

    Одним из способов борьбы с сепарацией частиц является увеличение отношения высоты бункера к его диаметру. Равномерное движение обеспечивается, если соблюдается условие [c.67]

    Аналитические зависимости для кривых ИТК позволяют проводить вычисления отгонов до заданных температур, включая и такие, которые при обычной лабораторной ректификации нельзя получить без большого искажения результатов анализа. Кроме того, по составу дегазированных нефтей, используя приведенные уравнения, можно определить состав пластовой нефти, а также состав и объем выделившихся при сепарации попутных нефтяных газов. [c.35]

    Однократная перегонка мазута проводится обычно в вакууме при нагреве мазута в трубчатых печах до температуры ниже температуры начала термического разложения тяжелых фракций с последующим движением парожидкостной смеси в трансферном трубопроводе и сепарации образовавшихся фаз в разделителе или в секции питания вакуумной колонны. При перегонке в глубоком вакууме потери напора в трансферном трубопроводе становятся соизмеримыми с давлением в разделителе, и перепад температур в трансферном трубопроводе достигает 20—30 °С. В связи с этим простую вакуумную перегонку мазута следует рассматривать как процесс изоэнтальпийного расширения смеси при дросселировании. При этом расчет температуры и доли отгона мазута на входе в фазный разделитель необходимо проводить одновременно с гидравлическим расчетом трансферного трубопровода. Кроме того, следует учитывать, что на входе в фазный разделитель не достигается состояние равновесия из-за малого времени пребывания парожидкостной смеси в трансферном трубопроводе и большего объема паров по сравнению с жидкостью. [c.74]

Рис. П-1. Двухпоточный узел ввода сырья в колонну без сепарации (а) и с сепарацией фаз после дросселирования (б). Рис. П-1. Двухпоточный <a href="/info/883250">узел ввода сырья</a> в колонну без сепарации (а) и с сепарацией фаз после дросселирования (б).

    В схемах с тепловым насосом на верхнем продукте в качестве хладоагента используют пары орошения и дистиллята (см. рис. П-6, б), которые после подогрева в теплообменнике 2 и сжатия в компрессоре конденсируются в подогревателе колонны 4. Затем жидкость охлаждается в теплообменнике 2, дросселируется в дросселе, и после сепарации образовавшихся фаз в сепараторе часть охлажденной жидкости подается на орошение колонны, а остальное количество отбирается в виде дистиллята. Избыточное тепло компрессора снимается также в холодильнике 3. [c.111]

    С точки зрения отмеченных выше свойств нефти как сырья для перегонки технология первичной перегонки нефти характеризуется такими особенностями применением как минимум двух ступеней перегонки — при атмосферном давлении и в вакууме применением водяного пара для отпаривания легких фракций из тяжелых остатков организацией четкого деления нефти и мазута на дистиллятные фракции и остаток с высокоэффективной сепарацией фаз при однократном их испарении. [c.152]

    Эффективная сепарация фаз в секции питания сложной колонны достигается установкой специальных сепараторов жидкости и промывкой потока паров стекающей жидкостью. Для этого режим работы колонны подбирают таким образом, чтобы с нижней тарелки сепарационной секции сложной колонны в нижнюю отпарную секцию стекал избыток орошения Рп, называемый избытком однократного испарения. Если принять расход избытка однократного испарения равным fn= (0,02—0,05)тогда доля отгона сырья должна быть примерно равна отбору дистиллятной фракции, поскольку е/= = Ог-1- (7 — т) и Рт=Рп. При правильной организации промывки и сепарации фаз после однократного испарения тяжелая дистиллятная фракция практически не содержит смолисто-асфальтеновых, сернистых и металлорганических соединений. [c.153]

Рис. 111-24. Эффективность сепарации жидкости отбойным устройством из сеток в вакуумных колоннах для перегонки мазута. Рис. 111-24. <a href="/info/1518464">Эффективность сепарации</a> жидкости <a href="/info/69113">отбойным устройством</a> из сеток в <a href="/info/62935">вакуумных колоннах</a> для перегонки мазута.
    Как уже было отмечено, качество масляных фракций существенно зависит от надежной работы отбойного устройства, установленного над вводом сырья в питательной секции колонны. Характерным в этом отношении являются данные, полученные при обследовании трех промышленных вакуумных колонн с сетчатыми отбойниками из вязанных рукавов с общим пакетом высотой 100—150 мм [49]. На рис. П1-24 представлена эффективность сепарации жидкости т) (%) на отбойнике в зависимости от скорости паров ш (м/с) в свободном сечении колонны. Эффективность оценивалась по уносу капель жидкости, определяемому коксуемостью паров (отбираемых до и после отбойника). Как видно из рисунка, наибольшая эффективность сепарации соответствовала изменению скорости паров в пределах 0,9—1,8 м/с. В этих условиях унос жидкости составлял порядка 0,4 кг на 1 кг пара. Дальнейшее увеличение скорости паров резко снижало эффективность сепарации капель жидкости до 16%, коксуемость паров до и после отбойника составляла при этом 5,86 и 5% соответственно. В связи с этим следует отметить, что особое значение для эффективной сепарации имеет правильно выполнен-ный- расчет зоны питания колонны и выбор основных размеров отбойного устройства. [c.178]

    На рис. 111-25 показаны результаты опытных пробегов вакуумной колонны с сепаратором (/) и без сепаратора (2) в секции питания [48], показавшие, что наличие сепаратора практически полностью задерживает унос жидкости на вышележащую тарелку. Остаточное содержание металлов и асфальтенов в газойле, очевидно, уже не зависит от эффективности сепарации отбойника, так как оно вызывается наличием летучих порфириновых соединений в паровой фазе и мелких витающих капель жидкости. Как видно из рисунка, предельная нагрузка зоны питания с сепаратором, при которой уровень содержания металлов и асфальтенов в газойле не меняется, составила / с = 0,15. В аналогичных условиях при отсутствии сепаратора унос жидкости и содержание металлов в газойле резко возрастают уже при нагрузках, соответствующих с = 0,085. [c.179]

    Материальный баланс после реконструкции колонны приведен в табл. 111.4, а качество продуктов разделения в табл. 111.5. Как видно из этих данных, реконструкция позволила увеличить производительность колонны почти в два раза, получить отбор широкой масляной фракции н. к. — 490°С от потенциала 83—85% при высоком качестве разделения без заметного температурного налегания меж- ду широкой фракцией и гудроном. Специальное устройство ввода сырья в колонну обеспечило высокую степень сепарации гудроновых частиц — унос этих частиц в зоне ввода сырья составил около 34%, при эффективности сепарации сетчатого отбойника 98,5—99,3%- К. п. д. клапанных тарелок составил 30—37 /о при среднем гидравлическом сопротивлении на одну тарелку 5,3—6,7 гПа, нагрузка тарелок по пару составила / 5=1,3—1.5 и нагрузка тарелок по жидкости = = 4,7—5,7 м (м-ч). [c.184]


    Поверхностные конденсаторы вакуумсоздающих систем должны создавать сопротивление парогазовому потоку не более 2,33—4 гПа, иметь высокий коэффициент теплопередачи и обеспечивать сепарацию жидкости и удаление несконденсированных газов. [c.202]

    I — гндроочистка или каталитический риформинг 2 — сепарация (выделение водородсодержащего газа) 3 — ректификация продуктов реакции  [c.231]

    Разделение катализата в процессе каталитического риформинга бензиновых фракций на полиметаллических катализаторах (при сравнительно невысоких давлениях — от 1,0 до 1,6 МПа) производится также в результате одно- или двухступенчатой холодной сепарации, но прн давлении в I ступени сепарации выше, чем в реакторе [20]. [c.232]

    На рис. IV-23, а изображена схема выделения газов из катализата риформинга с предварительной холодной сепарацией фаз. Газопродуктовую смесь из реактора подвергают предварительной сепарации при давлении реакции и 40°С (в предварительном сепараторе низкого давления). Затем образовавшуюся газовую фа- [c.232]

    I — нестабильный конденсат И — газ сепарации III — газ стабилизации Л —газ на факел V — широкая фракция VI — стабильный конденсат. [c.280]

    В период расщепления на шариках кокса оседает дополнительное количество кокса, из-за чего размер частиц увеличивается. Дробильная установка с последующей воздушной сепарацией снова производит необходимое количество частиц с нужными размерами, которые опять подаются в установку. Кокс не нужно обновлять в течение всего цикла, так как образующиеся коксовые шарики вполне заменяют истирающиеся частицы кокса. [c.27]

    Расход водорода на растворение и потери его через неплотности системы. В схему гидроочистки моторных топлив после реактора и системы теплообмена продуктов реакции с сырьем включен сепаратор для разделения циркулирующего водородсодержащего газа и гидрогенизата. Давление сепарации зависит от перепада давления в системе циркуляции водородсодержащего газа, температура — от выбранного варианта схемы теплообмена 40—50°С при холодной сепарации гидрогенизата и 160—230 °С при горячей. [c.20]

    Холодная Горячая сепарация сепарация [c.21]

    Состав углеводородного газа второй ступени сепарации зависит как от характеристики сырья и состава свежего водородсодержащего газа, так и рабочего давления в сепараторе. В табл. 13 приведена характеристика газа при проектных условиях сепарации, т. е. при 50 СиО.5 МПа. Выход газа колеблется в пределах 0,8—0,7% (масс.) на сырье. [c.44]

    Как правило, сырье в колонну подается в парожидкостном виде. Конструкция узла ввода должна способствовать хорошей сепарации [c.91]

    На заводах по-разному решается проблема улучшения охлаждения газо-продуктовой смеси. На одних заводах заменяют холодную сепарацию продуктов на горячую, на других— обвязку холодильников типа труба в трубе на параллельную подачу воды, иногда изменяют конструкцию аппарата, причем наиболее эффективны воздушные холодильники. [c.141]

    Высококипящие и остаточные фракции нефти содержат значительное количество гетероорганических смолисто — асфаль — теновых соединений и металлов, попадание которых при перегонке в дистилляты резко ухудшает их эксплуатационные характеристики и значительно усложняет последующую их переработку. Это обстоятельство обусловливает необходимость организации четкой сепарации фаз в секции питания атмосферной и особенно вакуум — [c.166]

    В работе [35] на примере разработки оптимальной схемы деметанизацни газов пиро пиза описано применение этого метода. В табл. П.З приведены исходные данные по процессу состав сырья, получаемых продуктов, температуры и давления. На рис. П-25 показаны принципиальные технологические схемы процесса, иллюстрирующие последовательность синтеза в качестве первоначального варианта (схема а) была принята обычная схема полной колонны с парциальным конденсатором при температуре хладоагента (этилена) минус 100 °С. Далее для конденсации и охлаждения верхнего продукта наряду с хладоагентом был использован дроссельэффект сухого газа (схема б). Затем исходное сырье охлаждали до температуры минус 62 С (схема в) н подвергали последовательной сепарации с подачей в колонну нескольких сырьевых потоков (схемы гид). Затем организовали промежуточное циркуляционное орошение в верхней частн колонны (схема е) и, наконец, — рецикл пропана с подачей его в промежуточный сырьевой конденсатор (схема ж). Соответствующие изменения температурного режима и стоимостные показатели процесса приведены в табл. П.4. Как видно, наибольшие затраты в простейшей схеме падают на потери этилена с сухим газом и на хладоагент, а по мере усовершенствования схемы эти статьи затрат существенно уменьшаются и становятся соизмеримыми с остальными элементами затрат для оптимальной схемы ж. [c.129]

    Технологические схемы блоков разделения гидрогенизатов гидроочистки и катализатов риформинга с получением высокооктановых бензинов зависят от сырья и давления реакции. На алю-мокобальтмолибденовых и платиновых катализаторах (давление реакции 4 МПа) газы из гидрогенизата и катализата выделяются обычно двухступенчатой холодной сепарацией. На I ступени выделяется водородсодержащий газ при давлении реакции и температуре около 40°С ( Б сепараторе высокого давления) на IIступени при этой же температуре и давлении 0,5—0,6 МПа отделяются растворенные углеводородные газы (в сепараторе низкого давления) (рис. 1У-21). В системе холодной двухступенчатой сепарации получается водородсодержащий газ (до 60—75% об. Нг) при сравнительно небольших потерях водорода с углеводородным газом. [c.231]

    При гидроочистке дизельного топлива и бмее тяжелых фракций целесообразно применение горячей сепарации или сочетание горячей и холодной сепараций. На рис. 1У-22 изображена комбинированная схема разделения гидрогенизата широкого фракционного состава с получением фракций бензина, дизельного и котельного топлива [19]. Схемой предусматривается горячая сепарация [c.231]

Рис. 1У-22. Комбинированная схема горячей н холодной сепарации гидрогенизата при гидроочнстке широких нефтяных фракций Рис. 1У-22. <a href="/info/970018">Комбинированная схема</a> горячей н холодной сепарации гидрогенизата при гидроочнстке широких нефтяных фракций
Рис. 1У-23. Принципиальные схемы разделения катализата риформннга с предварительной сепарацией и компримированием газовой фазы с последующей двухступенчатой холодной сепарацией при постоянном давлении (а) и с рециркуляцией газов отдувки (б) Рис. 1У-23. <a href="/info/1499465">Принципиальные схемы разделения</a> катализата риформннга с предварительной сепарацией и компримированием <a href="/info/3194">газовой фазы</a> с последующей двухступенчатой холодной сепарацией при <a href="/info/68371">постоянном давлении</a> (а) и с <a href="/info/29974">рециркуляцией газов</a> отдувки (б)
    С целью дополнительного извлечения легких углеводородов Сз—С4 газы отдув1ки из емкостей орошения стабилизатора и деэ-танизатора предлагается передавать на стадию предварительной сепарации [21] или на стадию II ступени холодной сепарации (рис. 1У-23, б) [22]. [c.233]

    Далинейшее улучшение процесса разделения катализата риформинга достигается при использовании холодной сепарации газа на I ступени и абсорбции газа стабильным катализатором на II ступени [23]. Принципиальная схема такой установки приведена на рис. 1У-24. Катализат охлаждают и частично конденсируют при 120 °С и направляют в I ступень сепарации, где под давлением 0,97 МПа он разделяется на газовую и жидкую фазы. Газовую фазу компримируют до 1,4 МПа и при 160 °С подают на разделение в абсорбер, на верх которого подают стабильный катализат при 38°С. Разделение катализата по данной схеме обеспечивает получение водородсодержащего газа с концентрацией 81,2% (об.) Нг при снижении зисплуатационных затрат по сравнению со схемой двухступенчатой сепарации на 10—15%. В табл. IV.13 приведены состав и параметры основных потоков блока разделения по схеме, изображенной на рис. 1У-24, на основе которых может быть рассчитан материальный баланс процесса. [c.234]

Рис. 1У-24. Схема разделения катализата риформннга сепарацией и абсорбцией Рис. 1У-24. <a href="/info/68922">Схема разделения</a> катализата риформннга сепарацией и абсорбцией
    Например, для деметанизации газов пиролиза предлагается система из четырех сепараторов и сложной ректификационной колонны с четырьмя вводами питания (рис. У-22) [25]. Газы разделяются за счет последовательного охлаждения и сепарации в четвертой ступени газ охлаждается до минус 140 °С. В верху к0Л0 Н ы температура при этом поддерживается минус 84 °С и давление 2,8 МПа. Для утяжеления состава газа в верху колонны в линию до конденсатора предлагается подавать бутановую фракцию из ста- [c.299]

    Для очистки промышленных газов от пыли, золы и других твердых ч .ст1П1, созданы высокоэффективные установки, принцип действия кс торых основан иа использовании электростатического осаждения, фил1)Трации через пористые слои и перегородки, промывки газов и инерционной сепарации. [c.207]

    Растворимость водорода также зависит от природы жидкой фазы и ее количества. С уменьшением плотности растворителя, ндпример в ряду дизельное топливо — керосин — бензин, растворимость водорода возрастает. Чем больше образуется при сепарации жидкой фазы, тем больше расходуется водорода на растворение. [c.21]

    Побочными продуктами процесса являются отгон (бепзин), углеводородный газ (второй ступени сепарации и стабилизации), сероводород и отдуваемый водородсодержащий газ. [c.42]

    Сепарация гидрогенизата. В Процессах гидроочистки моторныз топлив сепарация гидрогенизата применяется для выделения из нег( водородсодержащего и углеводородного газов. Выбор схемы данног( узла на установках разного типа определяется в основном конкрет ными условиями производства. [c.72]

    Существует два способа сепарации гидрогенизата холодны и горячий. Холодная сепарация может быть двух- и одностуненчато по давлению. [c.72]

    При двухступенчатой холодной сепарации (см. рис. И, 12) в пер вой ступени выделяется циркулирующий водородсодержащий га прп 40 —50 °С. Давление в сепараторе зависит от требуемого давленш в реакторе и возможной потери давления газа в сети перед подачез в сепаратор. Во второй ступени из гидрогенизата выделяется раство репный углеводородный газ. Давление в сепараторе второй, стунен складывается из давления в колонне стабилизации и давления, ко торое необходимо для подачи гидрогенизата в колонну. Наличие второй ступени сепарации гарантирует исключение прорыва сред1 высокого давления в стабилизационную колонну кроме того, сниже ние доли неконденсирующихся компонентов в верхнем продукт колонны улучшает коэффициент теплопередачи в конденсаторе холодильнике. [c.72]

    Холодная сепарация одноступенчатая по давлению (см. рис. 14 применяется, если стабилизационная колонна должна работать нр1 повышенном давлении с подачей водяного пара. В этом случае дол неконденсирующихся компонентов в верхнем продукте колонш снижается за счет присутствия водяного пара, поэтому увеличенга абсолютного количества газов практически не отражается на коэффи циенте теплопередачи конденсатора-холодильника. [c.72]

    При наличии ресурсов дешевого водорода горячая сепараци] (см. рис. 13) более эффективна, чем холодная, так как снижаютс капиталовложения и эксплуатационные расходы, за исключение расхода водорода, который возрастает. Наиболее эффективной тем пературой горячей сепарации, связанной с минимальным расходов водорода, является та, при которой с газом уходит не более 20 нефтепродукта. [c.72]

    Как видно из табл. 6.1, фурфурол обладает более высокой плотностью, и в этой связи сепарация рафинатной и экстрактной фаз по высоте экстракционной колонны будет осуществляться более полно при очистке масел фурфуролом. Д я улучшения разделения фаз нри фенольной очистке масел приходится несколько снижать прои шодительность установки по сырью. [c.239]


Смотреть страницы где упоминается термин Сепарация: [c.66]    [c.152]    [c.231]    [c.232]    [c.233]    [c.243]    [c.18]    [c.167]   
Смотреть главы в:

Регенерация отработанных нефтяных масел издание второе, переработанное и дополненное -> Сепарация

Промышленное псевдоожижение -> Сепарация

Справочник инженера - химика том второй -> Сепарация


Массообменные процессы химической технологии (1975) -- [ c.300 , c.309 ]

Промышленное псевдоожижение (1976) -- [ c.265 , c.281 ]

Справочник инженера - химика том второй (1969) -- [ c.0 , c.98 , c.104 , c.105 , c.106 , c.308 , c.309 , c.366 , c.367 , c.368 , c.370 ]

Основные процессы и аппараты Изд10 (2004) -- [ c.0 ]

Технология минеральных удобрений (1974) -- [ c.0 ]

Насосы и компрессоры (1974) -- [ c.285 ]

Процессы и аппараты химической технологии Издание 3 (1966) -- [ c.0 ]

Реакционная аппаратура и машины заводов (1975) -- [ c.102 , c.261 ]

Насосы и компрессоры (1974) -- [ c.285 ]

Основные процессы и аппараты химической технологии Издание 8 (1971) -- [ c.0 ]

Процессы и аппараты химической технологии Издание 5 (0) -- [ c.0 ]

Справочник по обогащению руд Издание 2 (1983) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте