Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

ЖИДКИЙ распространение в природе

    Сера. Простое вещество. Твердая, жидкая и газообразная сера. Химические свойства. Взаимодействие с металлами, неметаллами, кислотами и щелочами. Применение и распространение в природе. [c.121]

    Вода — самое распространенное в природе химическое соединение. Она покрывает 70,8% земной поверхности и занимает примерно 1/800 объема Земли. Содержание воды в литосфере, по современным оценкам, превышает 10 км , т. е. сопоставимо с ее количеством в морях и океанах. Вода присутствует в горных породах в свободном или связанном виде. Принято выделять несколько разновидностей воды, различающихся по степени связанности от гравитационной воды, способной перемещаться под действием силы тяжести или напорного градиента, до химически связанной конституционной воды, входящей в кристаллическую решетку минералов, как правило, в виде гидроксильных групп. Содержание свободной воды может достигать десятков процентов в пористых и трещиноватых породах верхних горизонтов земной коры, резко уменьшаясь с глубиной, хотя не всегда монотонно. Распределение воды по горизонтали также весьма неоднородно на всех глубинах встречаются участки различной степени обводненности, которую, однако, нигде нельзя считать нулевой. Физическое состояние воды зависит от давления, увеличение которого составляет примерно 100 МПа на каждые 3 км глубины, и температуры, определяемой геотермическим градиентом (от 5—10 до 200 град/км). Зона жидкой воды (а также льда в высоких широтах на глубине до 1 км) сменяется областью надкритического флюида при температурах 400—450°С выше 1100°С молекулы воды диссоциированы. Многие другие свойства воды также заметно изменяются с глубиной. Так, ионное произведение воды в нижней части земной коры оказывается повышенным на шесть порядков. Возрастает при этом и способность воды образовывать гомогенные системы с компонентами вмещающих пород, находящихся в твердом или частично расплавленном состоянии. Таким образом, можно сказать, что все природные жидкие и надкритические фазы представляют собой многокомпонентные смеси, в кото- [c.83]


    Известно, что система модификаторов адгезии, состоящая из резорцина, уротропина и высокодисперсной гидроокиси кремния, обеспечивает высокую прочность связи эластомера с химическими волокнами. Влияние системы модификаторов на механические свойства резин зависит не только от природы волокон, но и от фактора их формы. Это объясняют следующим. Прочность композиции пропорциональна фактору формы волокон. Если волокна очень длинные, суммарная поверхность контакта их с резиновой смесью весьма велика. Таким образом, волокна, длина и фактор формы которых выше критической, оказывают усиливающее действие на эластомер. Таково поведение полиамидных волокон в композициях. Существуют различные способы изготовления эластомерных композиций, наполненных волокнами смешение волокон с эластомерами в виде твердой фазы, жидкого каучука, водной дисперсии или раствора эластомера в органическом растворителе. Однако в производстве резиновых технических изделий жидкие композиции не получили широкого распространения. В основном изготовление и переработку резиновых смесей, содержащих волокнистые наполнители, ведут на обычном оборудовании резиновой промышленности — на вальцах, в резиносмесителях и экструдерах. [c.181]

    Состав подвижной фазы. Как пентан, так и диоксид углерода отличаются низкой полярностью. Полярность подвижной фазы можно увеличить, добавляя в нее подходящие модификаторы. Такие модификаторы оказывают весьма заметное влияние на удерживание. Уменьщение удерживания, вызванное добавлением модификаторов, по-видимому, сходно с наблюдаемым в условиях жидко-твердофазной хроматографии (см. разд. 3.2.3). Полярные модификаторы влияют не только на удерживание, но и на форму пика. Добавление модификаторов в подвижную фазу, особенно при разделении полярных компонентов, становится весьма распространенным. Природа и концентрация органического модификатора являются теми параметрами, которые можно использовать для оптимизации разделения методом сверхкритической флюидной хроматографии. Информация об исследованиях, проводимых в этом направлении, дана в статье Рендалла [92]. [c.133]

    Вода Н2О — наиболее распространенная в природе жидкость, В водной среде зародилась жизнь, и вода входит в состав всех живых существ. Вода — аномальная жидкость, она имеет ряд особенностей, отличающих ее от других жидких веществ (см. разд. 2.8). Они обусловлены малым размером молекул Н2О и действующими между ними сильными водородными связями. При 25 °С и 101 кПа не существует ни одного жидкого соединения, молекулы которого были бы меньше или равны по размеру (и по массе) молекуле Н2О.  [c.439]


    Особенностью нефти и газа по сравнению с твердыми породами является их способность к перемещениям и передвижениям, т. е. к миграции в толще пород. Кроме нефти, жидким веществом, еще более широко распространенным в природе, является вода, причем общее количество воды во много раз больше, чем количества нефти и газа. Вода, так же как и нефть, будучи жидкостью, способна мигрировать по пористым и трещиноватым породам. Вода может содержать в себе растворенные углеводороды, которые и перемещаются вместе с нею. [c.81]

    Растворимость вещества — его качественная и количественная способность образовывать раствор при смешивании с другим веществом (растворителем). Растворимость вещества зависит от его природы и агрегатного состояния до растворения, а также от природы растворителя и температуры приготовления раствора. Самый распространенный жидкий растворитель—вода, для нее температура растворения ограничивается интервалом О—100° С. Большинство растворяющихся в воде веществ являются твердыми, а по типу—солями и гидроксидами. [c.114]

    Вода относится к числу наиболее распространенных в природе веществ. Она играет исключительно важную роль в природе, в жизнедеятельности растений, животных и человека, а также в технологических процессах в различных отраслях народного хозяйства. На тепловых и атомных электростанциях, например, вода является основным рабочим веществом — теплоносителем, а на гидроэлектростанциях — носителем механической энергии. Исключительная роль воды в природе и технике обусловлена ее свойствами. Вода — термодинамически устойчивое соединение. Стандартная энергия Гиббса образования жидкой воды при температуре 298 К равна —237,57 кДж/моль, водяного пара —228,94 кДж/моль. Соответственно константа диссоциации водяного пара на водород и кислород очень мала  [c.370]

    Отмывание различных загрязнений — твердых и жидких, низко-и высокомолекулярных — процесс чрезвычайно широко распространенный не только в быту, но и в современной технике для очистки различных поверхностей перед последующей обработкой и нанесением защитных покрытий, отмывания от масла и грязи двигателей и кузовов машин и пр. близко к этим процессам и упомянутое в гл. П1 применение ПАВ для увеличения степени извлечения нефти из пласта. Синтетические ПАВ, рассмотренные в 3 гл. II, в основном используются в составе различных многокомпонентных композиций, называемых синтетическими моющими средствами (СМС). Сложность процесса отмывки связана, в частности, с тем, что загрязнения, как правило, представляют собой многокомпонентную смесь твердых и жидких веществ, часто образующую сильно структурированную систему при отмывании тканей на это накладывается и возможность чисто механического удерживания загрязнений между волокнами. Теория моющего действия, развитие которой еще далеко не завершено, призвана помочь в составлении оптимальных рецептур СМС и технологических приемов отмывания поверхностей различной природы и вместе с тем в обеспечении достаточной степени экологической чистоты этих процессов. [c.302]

    Вещество может существовать в трех состояниях — твердом, жидком и газообразном. В последние годы особенный интерес привлекает четвертое состояние вещества — плазма. Плазма представляет собой газ, в котором атомы или молекулы потеряли часть своих электронов и превратились в положительно заряженные ионы. При этом соотношение между числами ионов и электронов таково, что в целом общий заряд плазмы равен нулю, т. е. она является нейтральной. Вместе с тем плазма проводит электрический ток, подобно мета.плу, благодаря подвижности электронов. Такое состояние газа достигается, например, нагреванием до 3000—5000° С или сильным электрическим разрядом. Проявлениями плазмы в природе являются молния, северное сияние. При указанных и более высоких температурах число ионов может существенно превышать число атомов. Принято, что если степень ионизации газа близка к 1%, то он находится в состоянии плазмы. Плазма является наиболее распространенным состоянием во Вселенной, например Солнце полностью состоит из плазмы. Различают низкотемпературную (до 5000° С) и высокотемпературную плазму. [c.356]

    Классификация по агрегатному состоянию. Наиболее распространенная классификация дисперсных систем основана на различии в агрегатном состоянии дисперсной фазы и дисперсионной среды (табл. 2), Системы с газовой дисперсионной средой независимо от природы газа называют аэрозолями. Системы с жидкой дисперсионной средой — лиозоли. В зависимости от природы жидкости лиозоли делят на гидрозоли, бензозоли и т. п. [c.154]

    К четвертой, смешанной, группе относятся соединения твердой, жидкой и газообразной фаз, широко распространенные в природе. Особо следует выделить примеси твердой фазы, которые оказывают на металлы (в отличие от примесей других фаз) более продолжительное коррозионное воздействие. Размеры твердых частиц, в особенности в нижних слоях атмосферы, достигают довольно значительных величин от 10 до 20 мкм. Агрессивность их определяется непосредственным и косвенным воздействием на металл. Так, частицы угля и некоторые органические вещества (пыльца растений, бактерии и др.) сами по себе не принимают непосредственного участия в коррозии металла, но являются хорошими адсорбентами и, поглощая из атмосферы коррозионноактивные соединения, стимулируют процесс разрушения металла [25, 26]. [c.8]


    ГОРЮЧИЕ СЛАНЦЫ, осадочная горная порода орг. происхождения, в к-рой минер, составляющая преобладает над горючим орг. материалом (керогетюм). Имеют топкую слоистую структуру и хорошо выраженную сланцеватость (способность раскалываться па тонкие пластинки). Содержание керогена до 35% (после обогащения 70—75% ), влаги 10—15%. Осп. компоненты минер. части — глина, кварцевый песок, известняк. Наиб, распространенные в СССР прибалтийские Г. с. (кукерситы) содержат кероген сапропелитовой природы. Элементный состав орг. массы 55—80% С, 5,8—10,0% П, 7,0—35% О, 1,2—7,3%3, 0,2— 0,9% N. Теплота сгорания 14,6—16,7 МДж/кг. При полукоксовании кукерситов получ. 50—60% (от массы керогена) сланцевой смолы, применяемой для произ-ва жидкого топлива, пропиточных масел, дорожного битума и др. При полукоксовании приволжских Г. с. образуется ок. 25% смолы, к-рая использ. преим. для получ. ихтиола и де- [c.141]

    В природе парафины являются одними из самых распространенных органических минеральных образований. Они окружают нас повсюду и участвуют во многих природных процессах. Твердые и жидкие парафины входят в число основных углеводородных компонентов нефтей, присутствуют в составе битумов, углей, сланцев, смол, носков. Парафины участвуют в жизнедеятельности растений и животных содержатся в восковых покрытиях листьев, стеблей, фруктов, орехов, злаков, в воске, выделяемом пчелами, в жире печени акулы недавно парафины бьши обнаружены в нервных тканях головного мозга кролика и крысы. [c.7]

    Щелочной металл. Серебристо-белый (в тонком слое с фиолетовым оттенком), мягкий, низкоплавкий. Сине-зеленый пар калия состоит из атомов К (преобладают) и молекул К2. Химически растворяется в жидком аммиаке (темно-синий раствор), расплаве гидроксида калия. Чрезвычайно реакционноспособный, сильнейший восстановитель реагирует с О2 воздуха, водой (идет воспламенение выделяющегося Н2), разбавленными кислотами, неметаллами, аммиаком, сероводородом. Практически не реагирует с азотом (в отличие от Е1 и Na). Хорошо сохраняется под слоем бензина или керосина. С ртутью образует амальгаму. Пе сплавляется с Ь1, Mg, 2п, Сс1, А1 и Са. Образует интерметаллиды с Na, Т1, 8п, РЬ и В1. Окрашивает пламя газовой горелки в фиолетовый цвет. Пятый по распространенности в природе металл. Получение см. 44 , 49 , 57 760 , 761 . [c.28]

    Все это связано с большими научными и экономическими трудностями. Поэтому до сих пор химические методы стабилизации, основанные на введении в лекарства особых вспомогательных веществ-стабилизаторов, находят значительное распространение, особенно при стабилизации растворов, суспензий, эмульсий, хотя следует сказать, что стабилизаторы вводятся и для повышения стойкости таблетированных препаратов, например амидопирина (лимонная кислота), препаратов спорыньи (аскорбиновая и виннокаменная кислота) и т. д. В случае жидких лекарств используют довольно обширный ассортимент вспомогательных веществ — стабилизаторов самой различной химической природы. [c.31]

    Чтобы понять характер изменений в системах, подвергнутых ультразвуковому воздействию, следует отметить, что эти изменения существенны, когда ультразвуковые колебания соответствуют возникновению кавитационного режима. В данном -случае под кавитацией понимают последовательно развивающиеся процессы образования полостей в жидких средах. Такие полости заполняются парами окружающей жидкости и растворенными в ней газами и мгновенно закрываются. При этом создается давление до 10 —10 Па, что в большинстве случаев приводит к разрыву х1 мпческих связей. Разумеется, что описанные явления имеют место Только при распространении в жидкости ультразвуковых волн большой интенсивности в местах разряжения. С кавитацией связано появление в облучаемой жидкой среде и значительных механических напряжений. В результате захлопывания кавитационных полостей в фазе сжатия внешней ультразвуковой волны возникают з дарные волны с амплитудой, во много раз превышающей амплитуду внешней волны. При резонансе возникающие локальные давления в 10 раз превосходят гидростатические. Такие давления производят большие разрушительные действия. Наконец, в пульсирующих резонансных кавитационных пузырьках в зависимости от природы наполняющего их газа возникают локальные перегревы порядка нескольких тысяч градусов. [c.107]

    Одним из распространенных методов подготовки поверхности субстрата является создание искусственного микрорельефа, придание шероховатости гладкой поверхности. В шинной, обувной промышленности, в различных отраслях резинотехнической промышленности важнейшей технологической операцией для достижения необходимой прочности связп яв.ляется предварительная механическая обработка — шероховка поверхности резины. Механическую обработку поверхности проводят также нри склеивании металлов и нанесении на поверхность металлов покрытий. Различными способами — шлифованием, зашкуриванием, онеско-струиванием, травлением можно значительно повысить показатель доступности поверхности и, таким образом, адгезионную прочность. Увеличивая шероховатость поверхности субстрата, можно иногда достичь лучшего растекания жидкого адгезива. Но очевидно, что значение механического заклинивания, даже нри склеивании пористых субстратов, далеко не самое главное. Если увеличение площади соприкосновения адгезива с субстратом пе сопровождается изменением природы поверхности и не отражается на характере сил, возникающих ме кду молекулами адгезива и субстрата, повышение адгезии может быть относительно невелико. Механическая обработка поверхности субстрата ока- [c.370]

    Вода — самое распространенное вещество в природе (организм человека, например, содержит около 65% воды). Замечательные свойства воды изучены не до конца. Вода остается жидкой в широком интервале температур и обычно ведет себя как почти универсальный растворитель. Вода является ионизующим растворителем, вероятно, вследствие ее высокой диэлектрической проницаемости. Вода может принимать участие в кислотно-основных равновесных реакциях в пределах 16 единиц pH и участвовать в равновесных окислительно-восстановительных реакциях, потенциал которых изменяется в интервале более 2 В. Уменьшение плотности воды при образовании льда имеет решающее значение для поддержания жизни в мировом океане. [c.8]

    Однако как в природе, так и в технике такие вещества встречаются не часто. В подавляющем большинстве случаев ча практике встречаются трудно разделимые механические смеси, например некоторые металлические сплавы, а также растворы — жидкие или твердые в растворах никакой микроскоп не позволит различить составные части. Многие минералы, как, например, нефть, природные воды, представляют собой примеры наиболее распространенных в природе растворов. Техника широко использует металлические твердые растворы, так как многие из них обладают очень ценными для нее свойствами. [c.3]

    В специальной литературе [17] отмечалось, что процесс распространения ультразвуковых волн в жидкой среде является адиабатическим, поскольку изменение давления и плотности в колеблющихся слоях происходит настолько быстро, что переход тепловой энергии из сжатой части газа или жидкости в окружающую среду невозможен. Развивающаяся температура зависит ог природы газа, растворенного в резонансно колеблющихся [c.220]

    Значение каталитического алкилирования с применением различных жидких кислот в качестве катализаторов как метода получения высокооктановых компопентов бензина неуклонно растет. Для этого процесса обычно применяют серную или фтористоводородную кислоту. Качество получаемого продукта зависит от природы исходного сырья и режима процесса [40]. Поскольку катализаторы представляют собой весьма распространенные и хорошо известные химические соединения, дальнейшее рассмотрение их здесь не требуется. Следует, однако, отметить, что твердый фосфорнокислотный катализатор, упоминавшийся в разделе, посвященном полимеризации, применяется в промышленном масштабе и для получения кумола алкилированием бензола изопропиленом. [c.192]

Рис. 20. Образец ДКБ ориентации ВД длиной 300 мм из плиты сплава 7075-Т651, ис-пользуемый для изучения охрупчивания жидким металлом. Сочетание межкристаллитной природы развития трещины с вытянутым ориентированным зерном обеспечивает распространение трещ шы в центральной плоскости образца (44а1. Рис. 20. Образец ДКБ ориентации ВД длиной 300 мм из <a href="/info/1423897">плиты сплава</a> 7075-Т651, ис-пользуемый для изучения <a href="/info/486540">охрупчивания жидким металлом</a>. Сочетание межкристаллитной <a href="/info/1622794">природы развития</a> трещины с вытянутым ориентированным зерном обеспечивает распространение трещ шы в <a href="/info/314361">центральной плоскости</a> образца (44а1.
    Ф, п, I рода - широко распространенные в природе явления, К ним относятся испарение и конденсация из газовой в жидкую фазу, плавление и затвердевание, сублимация и конденсация Сдесублимация) из газовой в твердую фазу, большинство полиморфных превращений, нек-рые стр турные переходы в твердых телах, напр, образование мартенсита в сплаве железо - углерод, В чистых сверхпроводниках достаточно сильное магн, поле вызывает Ф, п. I рода из сверхпроводящего в нормальное состояние. [c.55]

    К методам приведения относится и так называемый -метод де Бура [167], получивший наибольшее распространение. Этот метод, как будет показано далее, представляет особый интерес при исследовании адсорбции из водных растворов, и к его более детальному анализу в этой связи мы еще должны будем вернуться. Для определения удельной поверхности адсорбентов по этому методу также пользуются стандартным адсорбентом с известной поверхностью. При исследовании адсорбции на углеродных материалах в качестве стандарта выбирают непористую сажу. Изотермы адсорбции стандартного адсорбата (азота) на обоих адсорбентах выражают в виде зависимости объема адсорбированного вещества 1>а от равновесного относительного давления. При этом плотность адсорбированного вещества принимают равной плотности его в жидком состоянии при той же температуре (как это впервые было допущено Поляни). Поскольку поверхность непорпстого стандартного адсорбента известна, то из величин адсорбированного объема вещества можно рассчитать среднюю статистическую толщину адсорбционного слоя I и представить ее как функцию plps В -методе допускается, что на адсорбенте с неизвестной удельной поверхностью одинаковой химической природы средняя статистическая толщина адсорбционного слоя при равных р р такова же, как и на адсорбенте с известной поверхностью. Это условие справедливо при приблизительном равенстве энергетических характеристик адсорбентов. Для всех таких адсорбентов должна существовать единая кривая = / (р/р.ч), что и подтвернадается большим количеством экспериментальных измерений [141, 142]. [c.71]

    Эффекты диффузии газа или иаров горючего уже упоминались в гл. 5 в связи с механизмом самовосиламенения одиночных капель жидкого горючего и распылов. До сих пор в основном рассматривались проблемы распространения иламеии (гл. 7) и искровое воспламенение (гл. 3) в предварительно перемешанных газах. Даже в этих случаях явление диффузии играет определенную роль, хотя и не оказывает решающего влияния на свойства иламени. Однако существуют такие типы пламен, когда взаимная диффузия между парами горючего (нли горючим газом), с одной стороны, и воздухом (или кислородом), с другой стороны, играет главную роль, т. е. когда скорость горения и форма пламени определяются диффузией. Такие пламена отличаются по своей природе от предварительно перемешанных пламен и обычно называются диффузионными иламенами. Множество примеров диффузионных пламен можно обнаружить вокруг нас факел свечи и пламя керосиновой лампы, которые используются для освещения, горение дров и каменного угля, которые используются в качестве источника тепла и т. д. По-видимому, самым первым типом горения, с которым познакомился человек, было именно диффузионное горение. Пламена, возникающие при горении распыленного топлива, также являются примером диффузионных пламен, которые используются в промышленных печах и тепловых двигателях. [c.168]

    В последнее время получили распространение гипотезы о двухструктурной модели воды, предполагающие существование в жидкой воде по крайней мере двух различающихся структур ближнего окружения, отличающихся упаковкой, природой теплового движения и взаимодействия молекул в них [5, 6]. Несмотря на разницу в количественных оценках, общепризнанным считается наличие относительно крупномасщтабных флуктуаций плотности в жидкой воде — ее микрогетерогенность. Прямое подтверждение этому дают данные диэлектрической релаксации жидкой [c.13]

    Каждый тип жидких кристаллов обладает своими собственными геометрическими и оптическими свойствами. На молекулярном уровне это означает, что каждый такой порядок обладает определенной группой симметрии [6]. Большая часть двоякопреломля-ющих биологических систем обнаруживает структуру, симметрия которой совпадает с различными хорошо известными мезоморфными фазами [7]. Таким образом, различные типы мезоморфных порядков широко распространены в живой природе. Мы не должны забывать также, что существуют и истинные трехмерные кристаллы [8]. Важность мезоморфных структур (в том числе и коллоидов) определяется их присутствием в мембранах клеток и клеточных органелл, в клеточных ядрах и хромосомах многих микроорганизмов, в миелиновых оболочках аксонов нервных клеток (особенно распространенных в белом веществе мозга позвоночных), а также в мышечных и скелетных тканях [3, 7, 9—1 ]. [c.277]

    Солиозоли (твердые золи). Микрогетерогенная система, состоящая из твердой, жидкой или газообразной дисперсной фазы и твердой дисперсионной среды, называется солиозолем. Несмотря на громадную распространенность солиозолей в природе и технике, эти системы изучены меньше, чем лиозоли и аэрозоли. Классическим примером твердого золя является золотое рубиновое стекло, состоящее из твердой стеклянной дисперсионной среды и твердой золотой дисперсной фазы (в количестве 0,01%). [c.357]


Смотреть страницы где упоминается термин ЖИДКИЙ распространение в природе: [c.189]    [c.205]    [c.22]    [c.269]    [c.247]    [c.43]    [c.246]    [c.350]    [c.123]    [c.144]    [c.9]    [c.28]    [c.407]    [c.195]    [c.10]    [c.13]    [c.147]   
Курс неорганической химии (1963) -- [ c.43 ]




ПОИСК







© 2025 chem21.info Реклама на сайте