Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Оптические и радиационные свойства

    При действии ионизирующего излучения на мономер в нем могут образовываться свободные радикалы, сольватированные электроны и ионы, которые могут служить в качестве активных центров. К преимуществам радиационной полимеризации относятся возможность полимеризации любых мономеров, высокая степень чистоты продукта, независимость скорости инициирования от температуры, простота управления процессом, например изменением мощности дозы. В отличие от фотополимеризации отсутствует зависимость от оптических свойств среды. [c.197]


    Кварцевое стекло обладает высокой термостойкостью, огнеупорностью, химической и радиационной стойкостью, оптической прозрачностью в широком диапазоне длин волн, высокими электроизоляционными свойствами. Путем введения в кварцевое стекло малых добавок различных оксидов ему можно придать некоторые специальные свойства, например избирательное светопропускание, повышенную жаростойкость, пониженный коэффициент теплового расширения и др. Это значительно расширяет области его применения в атомной энергетике, химическом машиностроении, радиоэлектронике, космической технике, светотехнике, прецизионном приборостроении и др. [c.37]

    ОПТИЧЕСКИЕ И РАДИАЦИОННЫЕ СВОЙСТВА [c.39]

    Оптические свойства субмикронного фонового аэрозоля долл<ны определяться оптическими константами главной его компоненты — сернокислого аммония (ЫН4)2504. По исследованиям [293], в ИК области спектра (рис. 2.4, 2.5) сернокислый аммоний характеризуется значительными коэффициентами поглош ения х начиная с длин волн 1 мкм вплоть до 40 мкм, что свидетельствует о существенном влиянии, которое этот компонент должен оказывать на оптические и радиационные свойства морского аэрозоля. Что же касается значений коэффициента преломления п, то в случае (ЫН4)2504 в ближней ИК области (до 5 мкм) они остаются довольно постоянными (1,48—1,55). В более длинноволновой части спектра величина в значительной степени нерегулярна [c.86]

    Обобщена информация по микрофизическим и оптическим свойствам атмосферного аэрозоля. Предпринят анализ имеющихся моделей аэрозоля и выполнена разработка новых моделей, позволяющих учесть влияние специфики оптических свойств глобального аэрозоля, обусловленной различием механизмов генерации и стока тропосферных и стратосферных аэрозолей. На основе разработанных моделей глобального аэрозоля выполнено численное моделирование с целью анализа влияния аэрозоля на спектральное распределение и пространственную структуру полей коротковолновой и длинноволновой радиации. Обсуждена проблема радиационного теплообмена в замутненной атмосфере. [c.2]

    Важным аспектом глобальной энергетики атмосферы является проблема возрастающего влияния аэрозольного загрязнения, обусловленного деятельностью человека, на климат, концентрацию атмосферного аэрозоля и его оптические свойства. Комплексные программы аэрозольно-радиационных экспериментов, проведенных в последние годы в различных районах земного шара, показали, что аэрозоль способен существенно поглощать солнечное излучение и оказывать значительное влияние на структуру радиационного баланса атмосферы. Актуальное значение имеет проблема влияния пылевых выносов на радиационный режим атмосферы над континентами и океанами. Чрезвычайно сложной задачей является учет радиационного фактора в генерации и трансформации поля атмосферного аэрозоля. Поэтому необходимо изучение корреляционных связей лучистого, конвективного и турбулентного [c.4]


    В предлагаемой монографии обобщена накопленная в настоящее время информация по микрофизическим свойствам атмосфер-1 ого аэрозоля, дан анализ имеющихся моделей атмосферного аэрозоля и рассмотрены новые модели, которые позволяют учесть влияние различных механизмов генерации и стока тропосферных и стратосферных аэрозолей на оптические свойства глобального аэрозоля. На основе разработанных моделей глобального атмосферного аэрозоля выполнены теоретические исследования влияния аэрозоля на спектральное распределение и пространственную структуру полей коротковолновой и длинноволновой радиации и обсуждена проблема радиационного теплообмена в замутненной атмосфере. [c.5]

    Почвенно-эрозионный аэрозоль является доминирующим типом тропосферных аэрозолей и обладает глобальной распространенностью. Его присутствие обнаружено не только над континентами, но и над морскими акваториями и океанами. Особенно велико влияние этого компонента аэрозоля на оптические свойства атмосферы и ее радиационный режим в условиях пылевых бурь, характерных для аридных и субаридных районов. Большая сухость и измельченность поверхностного слоя почвы, низкая влажность воздуха, сильные ветры благоприятствуют подъему пыли на значительные высоты тропосферы и ее выносу в различные регионы земного шара. При усилении ветра увеличивается количество поднятой в воздух пыли и изменяется микроструктура частиц, составляющих пылевое облако. [c.90]

    Для контроля качества разнообразных по форме, свойствам и назначению материалов и юделий используются различные физические явления, возникающие при взаимодействии полей, излучений и веществ с контролируемыми объектами. Согласно ГОСТ 18353-79 в зависимости от используемых физических явлений различают девять видов неразрушаюшего контроля акустический, вихретоковый, магнитный, оптический, проникающих веществ, радиационный, радиоволновый, тепловой и электрический. На предприятиях нефтехимии и нефтепереработки, где в основном используется крупногабаритное оборудование, изготовленное из различных марок сталей, перспективным является применение современных вы-сокопроизводргтеяьных магнитных и вихретоковых методов неразрушающего контроля, основанных на анализе взаимодействия электромагнитного поля с объектом контроля. [c.97]

    Доля аэрозоля антропогенного происхождения непрерывно возрастает. Учет специфических свойств этого типа аэрозоля также необходим при разработке оптических моделей. Особенно важен учет влияния аэрозоля антропогенного происхождения при решении задач лучистого теплообмена, а также при исследовании влияния аэрозоля на структуру радиационного баланса атмосферы, а также его изменчивость в различных климатических зонах. [c.136]

    Дальнейшее совершенствование системы моделирования оптических характеристик атмосферного аэрозоля должно выполняться с учетом радиационного фактора. В этой связи чрезвычайно важным представляется изучение корреляционных связей лучистого, конвективного и турбулентного тепло- и массообмена с генерацией химическим составом, микроструктурой и оптическими свойствами атмосферного аэрозоля. [c.181]

    Источники излучения. Все используемые в оптической спектроскопии источники излучения являются излучателями непрерывного спектра. Для инфракрасной спектроскопии, а также для спектроскопии в видимой области, используют раскаленные излучатели для ультрафиолетовой спектроскопии — специальные газоразрядные лампы. Распределение интенсивности излучения по спектру для идеального термического излучателя описывается законом Планка для излучения энергии абсолютно черным телом. В широком диапазоне частот интенсивность излучения различна. Особенно мала она в самом конце длинноволновой области после прохождения максимума, ближе к концу коротковолновой области, интенсивность излучения быстро падает. Радиационные свойства излучателя и положение максимума интенсивности определяются температурой, химическим составом и состоянием поверхности этого излучателя. Испольчуемые в ультрафиолетовой области водородная и аейтериевая лампы характеризуются почти равномерным спектральным распределением энергии в интервале частот 33 ООО—50 ООО см ( 300—200 нм) [401. Сведения о наиболее часто используемых излучателях непрерывного спектра приведены в табл. 5.18. [c.235]

    Далее обратимся к оценке влияния аэрозоля на парниковый эффект для среднего современного состояния замутненности атмосферы. Напомним, что влияние аэрозоля на радиационный режим будет проявляться через изменение альбедо планеты, вертикального профиля скорости радиационного нагревания атмосферы вследствие поглощения излучения Солнца частицами, вертикального профиля скорости радиационного выхолаживания атмосферы за счет трансформации длинноволновых лучистых притоков тепла в полосах поглощения излучения аэрозолем. При этом в зависимости от оптической плотности аэрозоля, его микроструктуры и химического состава создаются условия, при которых рассеяние излучения аэрозолем уменьшает или увеличивает альбедо Земли как планеты. Неоднозначность выводов здесь объясняется неопределенностью свойств аэрозоля, обусловленной большой пространственно-временной изменчивостью поля концентрации и микроструктуры, а также зависимостью химического состава аэрозолей от условий их генерации. Для примера в табл. 5.2 приведены значения вероятности выживания кванта соо в области длин волн от [c.201]


    Представляет интерес рассмотреть влияние выноса в стратосферу вулканического аэрозоля на радиационный режим атмосферы. Выброс в стратосферу вулканического аэрозоля приводит к увеличению поглощения стратосферой коротковолновой радиации, а следовательно, к увеличению температуры стратосферы. С другой стороны, вулканический аэрозоль не имеет сильных полос поглощения в области спектра теплового излучения, поэтому изменение в высотной структуре эффективного потока теплового излучения в основном обусловлено изменением вертикального профиля температуры стратосферы. Вулканический аэрозоль при оптической толщине Та(Я =0,55 мкм) 0,1 слабо влияет на изменения альбедо планеты и в пределах ошибок расчета планетарное альбедо можно полагать постоянным. Такая ситуация обусловлена как поглощающими свойствами вулканического аэрозоля, так и учетом уменьшения поглощения атмосферными газами коротковолновой радиации. Неизменность эффективной температуры планеты требует уменьшения температуры поверхности планеты и нижних слоев тропосферы. Выброс в стратосферу вулканического [c.207]

    Если расплав и монокристалл имеют разную оптическую прозрачность, то это различие достаточно сложно учесть. Например, теплофизические свойства расплава оксида алюминия, измеренные экспериментально, имеют величину, сравнимую с теплофизическими свойствами монокристалла (А рад = 2,05 Вт/м-К, А к = 3,4 Вт/м-К). То есть при выращивании монокристаллов лейкосапфира вклад радиационной составляющей теплопереноса в общий теплообмен весьма значителен. Рассмотрение степени оптической [c.52]

    В частности, стандартизованы термины и определения, которые применяют для таких объектов НК, как аппаратура для рентгеноструктурного и рентгеноспектрального анализа узлы и устройства гамма-аппаратов средства рентгенорадиометрического анализа приборы для определения физико-химических свойств и состава веществ приборы рентгеновские техническая диагностика контроль акустический, радиационный, вихретоковый, магнитный, оптический, капиллярный, радиоволновой, тепловой, электрический, течеискание в областях измерений толщины покрытий и шероховатости поверх- [c.18]

    Качество радиационно-оптических преобразователей в значительной степени определяется свойствами их входных экранов. [c.89]

    Импульсный радиолиз возник в радиационной химии, которая изучает химические и физико-химические превращения веществ под действием ионизирующего излучения. Его широко применяют для выяснения механизма радиолитических превращений, где с его помощью достигнуты крупные успехи установлено образование сольватированных электронов (ег) при радиолизе жидкостей, экспериментально обнаружено наличие шпор в облученных воде и этаноле, определены времена сольватации электронов в ряде жидкостей, идентифицированы другие первичные продукты радиолиза многих систем, исследована их реакционная способность и т. д. Кроме того, импульсный радиолиз часто используют для решения различных общехимических проблем. Этим методом получают и исследуют сольватированные электроны, неорганические и органические свободные радикалы, анион- и катион-радикалы, ионы металлов в необычных состояниях окисления, возбужденные молекулы и атомы, карбанионы и карбокатионы, ионные пары. Его применяют для изучения многих свойств указанных короткоживущих частиц реакционной способности, оптических спектров поглощения, коэффициентов диффузии, величин рК электролитической диссоциации и т. п. Нередко он находит применение для исследования особенностей химических и физико-химических процессов кинетики быстрых реакций, туннелирования электронов, переноса протонов, передачи энергии возбуждения, химической поляризации электронов и других. [c.123]

    Оптические свойства изменяются при любом радиационно-химич. процессе, т. к. изменение химич. состава и строения макромолекул влияет на спектры поглощения, пропускания и отражения света а различных диапазонах длин волн. Сильные видимые изменения цвета (обычно потемнение) происходят гл. обр., из-за окисления и увеличения ненасыщенности. [c.130]

    В главе VII Ядерные свойства и влияние облучения изложены сведения о сечениях поглощения и рассеяния, о ядерных свойствах окислов-замедлителей, о пороговых энергиях реакций, приводящих к образованию новых элементов в окислах, о некоторых характеристиках изотопов, образующихся в окислах при облучении. В разделах главы приведены данные о влиянии облучения на объем окислов, их плотность, параметры решетки, на теплопроводность, на изменение механических, электрических и оптических свойств окислов. Также указаны сведения о запасенной энергии и внутреннем трении, о радиационных эффектах и радиационной стойкости. [c.9]

    Примеси и решеточные вакансии относятся к одному из наиболее распространенных типов структурных дефектов в А120з-кера-миках, во многом определяя их функциональные характеристики. Так, присутствие нейтральных или заряженных кислородных вакансий заметно отражается на оптических, радиационных свойствах А1аОз [79—82. Наличие примесей (например атомов РЗМ) способствует изменению структурных, термомеханических свойств, влияет на морфологию зерен, адгезионную способность, модифицирует характеристики межфазных структур сложных керамик, содержащих оксид алюминия [83—86]. [c.131]

    Все источники излучения, используемые в приборах для оптического детектирования в ТСХ, являются излучателями непрерывного спектра. При детектировании в видимой области спектра используют раскаленные излучатели, в ультрафиолетовой — специальные газоразрядные лампы. Радиационные свойства раскаленного излучателя п ноложение максимума интенсивности излучения определяются температурой, химическим составом и состоянием поверхности этого излучателя. Используемые в ультрафиолетовой области водородные, тритпевые и галогеновые лампы дают почти равномерное спектральное распределение энергш в относительно широком интервале частот. [c.76]

    Помимо основпого назначения — защиты материалов от разрушения в результате коррозии, эрозии и перегрева, керамические покрытия могут придавать поверхностям детален некоторые специфические (оптические, диэлектрические), свойства (заданные коэффициенты излучения, высокую радиационную устойчивость, радиопрозрачпость и др.). [c.36]

    Разработанные к настоящему времени технологии получения высокочистых монокристаллов алмаза с заданными свойствами и алмазных пленок открывают новые перспективы их использования при изготовлении оптических окон для мощных лазеров и оптических приборов, теплоотводов, элементной базы для создания мощньпс транзисторов и различного рода датчиков, в частности, датчиков радиационного излучения. [c.4]

    Современная техника и народное хозяйство непрерывно и настойчиво выдвигают задачи создания новых материалов с заданными свойствами. При кратком перечислении достаточно указать на материалы с особыми механическими (высокий уровень прочности, демпфирования, радиационной устойчивости), электрическими (сверхпроводниковые материалы с высокими Тс и аморфные и кристаллические полупроводниковые материалы, пьезе-, сег-нето- и антисегнетоэлектрики, электреты), магнитными (новые ферромагнетики, ферроэлектрики, ферроэластики), оптическими (люминофоры, кристаллы для квантовой, инфракрасной и ультрафиолетовой оптики) и другими свойствами. В ряде случаев требуется создание материалов, обладающих комплексом свойств, и потому не случайно в Основных направлениях развития народного хозяйства СССР на 1976—1980 годы , утвержденных XXV съездом Коммунистической партии Советского Союза, записано ..... развивать теоретические и экспериментальные исследования в области ядерной физики, физики плазмы, твердого тела. .. в целях ускорения научно-технического прогресса, в особенности развития атомной и создания научно-технических основ термоядерной энергетики,. . . создания и широкого внедрения принципиально новой техники, новых конструкционных, магнитных, полупроводниковых, сверхпроводящих и других материалов, технически ценных кристаллов. . .  [c.8]

    Рассмотрено влияние на конвек ги Вную теплопередачу степени перегрева расплава и его физических свойств и показано, что большинство солевых растворов пропускают инфракрасную часть излучения и сами излучают, в связи с чем радиационная составляющая может играть существенную роль в тепловой работе аппарата. Си-стематазираваны оптические характеристики солевых ра1Сплавов. [c.2]

    Анализ свойств кардовых полиимидов показьшает, что они являются высоко тепло-, термо-, радиационно- и хемостойкими полимерами. Это, наряду с возможностью переработки многих из них в "циклизованной" форме, делает их перспективными для практического использования в различных изделиях, предназначенных для продолжительной эксплуатации при температурах выше 200 °С. Из кардовых полиимидов поливом из растворов получаются часто практически неокрашенные прочные пленки (прочность на разрыв 1000-1100 кгс/см , удлинение при разрыве 40-70%), не уступающие по электрическим свойствам в интервале 20-300 °С известной пленке "кантон Н" [211]. Изучение оптических свойств пленок полиимида анилинфлуорена и 3,3, 4,4 -тетракарбоксидифенилоксида показало, что они обладают высоким оптическим пропусканием при 500 нм (81-87%) и являются термо- и фоторадиационно-стойкими. После термообработки до 300 °С или после УФ-облучения дозой, эквивалентной 300 солнечным часам, оптическое пропускание пленок уменьшается всего лишь на 1-3% [158]. [c.137]

    Основные достоинства полимерных. материалов низкая стоимость, сравнительная простота изготовления,. малая энергоемкость и. шлоот-ходность методов по.лучсния и переработки, невысокая плотность, высокая стойкость к агрессивным средам, атмосферно гу и радиационному воздействиям и ударным нагрузкам, низкая теплопроводность, высокие оптические, радио- и электротехнические свойства. Основные недостатки низкая тепло- и тер.мостойкость, большое тепловое расширение, склонность к ползу-чести и релаксации напряжений, ДJ я многих полимеров - горючесть. [c.48]

    Данные наблюдений свидетельствуют о большой изменчивости микрофизических свойств аэрозоля и, как следствие, его оптических характеристик. Существенно различны свойства аэрозолей, генерируемых различными процессами. В зависимости от типа и химического состава аэрозоля в значительной степени изменяются процессы его пространственно-временной трансформации. На первых этапах выявление воздействия аэрозоля на спектральную и пространственную структуры полей коротковолновой и длинноволновой радиации, вертикальных профилей спектральных и интегральных потоков, баланса и притока лучистой энергии должно базироваться на сравнительно простых моделях с их фиксированными свойствами. Однако уже в настоящее время возникает потребность в том, чтобы разработать модели формирования и трансформации аэрозоля с учетом его пространственно-временной изменчивости, влияния метеопараметров, а также динамики атмосферы. Несомненно, что такая задача может быть решена только с помощью ЭВМ, оптические характеристики аэрозоля на которой формируются программами аэрозольного блока , являющегося составной частью единой замкнутой системы численного моделирования радиационных процессов. [c.137]

    Случай а/ 1 является промежуточным между а1 1иа1< 1. Присутствуют сразу оба механизма передачи тепла фононный и радиационный их доля определяется оптическими свойствами конкретной системы. В этом случае под коэффициентом теплопроводности понимается сумма двух составляющих — фононной и радиационной  [c.52]

    Итак,измерение электрофизических свойств сдела. [о зозмо.жным уотанонление роли электронов,дырок к радиационного заряда в реакция разложения спирта, однако изучить более детально картину ра-диациошых нарушений в катализаторах удалось с помощью оптических спектров. [c.280]

    Сравнение каталитических и оптических свойств окислов р.з.э. и пгтрия выявило роль радиационных дефектов в реакции разложения [c.281]

    В стекловарении стронций используют для получения специальных оптических стекол он повышает химическую и термическую устойчивость стекла и показатели преломления. Так, стекло, содержащее 9 % 5гО, обладает высоким сопротивлением истиранию и большой эластичностью, легко поддастся механической обработке (кручению, переработке в пряжу и ткани). В нашей стране разработана технология получения стронцийсодержащего стекла без бора. Такое стекло обладает высокой химической стойкостью, прочностью и электрофизическими свойствами. Установлена способность стронциевых стекол поглощать рентгеновское излучение трубок цветных телевизоров, а также улучшать радиационную стойкость. Фторид стронция используют для производства лазеров и оптической керамики. Гидроксид стронция применяют в нефтяной промышленности для производства смазочных масел с повышенным сопротивлением окислению, а в пищевой — для обработки отходов сахарного производства с целью дополнительного извлечения сахара. Соединения стронция входят также в состав эмалей, глазурей и керамики Их широко используют в химической промышленное ги в качестве наполнителей резииы, стабилизаторов пластмасс, а также для очистки каустической соды от железа и марганца, в качестве катализаторов в органическом синтезе и при крекинге нефти и т. д. [c.114]

    Из радиационной химии известно, что поглощение сольватированных электронов в смесях осуществляется преимущественно молекулами более полярного вещества. Главная особенность таких смесей — существенное влияние малого количества полярной жидкости на свойства сольватированного электрона в неполярной жидкости. При этом наблю дается смещение максимума полосы оптического поглощения электрона. Это положение иллюстрируется данными рис. 15.10, на котором нршедены [c.339]

    В отличие от фотонолимеризации, при радиационной полимеризации возможность инициирования процесса не зависит от оптических свойств среды. [c.251]


Смотреть страницы где упоминается термин Оптические и радиационные свойства: [c.36]    [c.15]    [c.15]    [c.71]    [c.54]    [c.196]    [c.52]    [c.272]    [c.291]   
Смотреть главы в:

Физические методы интенсификации процессов химической технологии -> Оптические и радиационные свойства




ПОИСК





Смотрите так же термины и статьи:

Оптические свойства

Оптические свойства свойства



© 2025 chem21.info Реклама на сайте