Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гиббса правило фаз в системах жидкость-жидкость

    Фазовые равновесия в гетерогенных системах. Правило фаз Гиббса. Гетерогенными фазовыми равновесиями называются равновесия, устанавливающиеся в физических процессах перехода веществ из одной фазы (простой или смешанной) в другие фазы (простые или смешанные). Такие равновесия наблюдаются при кипении жидкости под постоянным давлением (жидкость пар), плавлении кристаллов (твердое жидкость), при выделении кристаллов из насыщенного раствора соли (жидкость—твердое—пар) и т. д. Термодинамическое равновесие в гетерогенных системах характеризуется сколь угодно длительным сосуществованием нескольких фаз в условиях постоянства давления и температуры при этом концентрации веществ в каждой фазе и парциальные давления не изменяются, т.е. = О, и [c.156]


    Фазовые равновесия в гетерогенных системах. Правило фаз Гиббса. Гетерогенными фазовыми равновесиями называются равновесия, устанавливающиеся в физических процессах перехода веществ из одной фазы (простой или смешанной) в другие фазы (простые или смешанные). Такие равновесия наблюдаются при кипении жидкости под постоянным давлением (жидкость пар), плавлении кристаллов (твердое жидкость), при выделении кристаллов из насыщенного раствора соли (жидкость—твердое—пар) и т. д. Термодинамическое равновесие в гетерогенных системах характеризуется сколь угодно длительным сосуществованием нескольких фаз в условиях постоянства давления и температуры при этом концентрации веществ в каждой фазе и парциальные давления не изменяются, т.е. 1 i dn.i = О, и как показано в гл. VII, 8, химический потенциал любого компонента I во всех фазах а, р, у... одинаков, т. е. р, = = [У. =. ... В целом многофазная гетерогенная система в состоянии истинного равновесия имеет минимальное абсолютное значение изобарного потенциала. [c.156]

    Гетерогенные системы, состоящие или из газа и капель жидкости, или из газа и взвешенных твердых частиц, называют соответственно туманом и дымом (пылью) и объединяют под одним общим названием аэрозоли [5]. Аэрозоли относятся к такой области равновесий многофазных систем, когда вследствие относительно большой развитой поверхности дисперсных частиц повышается роль их поверхностной энергии как отдельной степени свободы в уравнении для правила фаз Гиббса. Чем мельче взвешенные частицы в газе, тем [c.111]

    На рис. 33 а, б можно отметить, что поле диаграммы для воды и бензола разделяется кривыми фазовых переходов 1-го рода на три области пара, жидкости и твердого тела. Исследуем эти диаграммы с помощью правила фаз Гиббса. Система, состояние которой определяется точками внутри каждой области, является гомогенной. Согласно правилу фаз она характеризуется двумя степенями свободы  [c.164]

    Вещество может растворяться самопроизвольно, когда энергия Гиббса уменьшается АО=АЯ—ТД5, ДС<0. При растворении вещества (особенно в твердом состоянии) энтропия системы увеличивается А5>0. Как правило, растворимость твердых веществ в жидкостях растет при нагревании и зависит как от природы вещества, так и от природы растворителя. На рис. 8.1 в качестве растворителей взяты НаО, СНзОН, СгНбОН. Анализ кривых раст- [c.196]

    Жидкости, не относящиеся к одному гомологическому ряду, как правило, имеют ограниченную взаимную растворимость. Подобное явление — показатель неидеальности, поэтому, рассматривая вопросы равновесия между жидкими фазами, необходимо руководствоваться теми же термодинамическими приемами, что и при изучении равновесия в системах жидкость — пар, поскольку оба указанных случая соответствуют условиям минимума энергии Гиббса. Термодинамического различия между этими двумя типами равновесия не существует, но некоторые фактические различия, несомненно, имеются. [c.352]


    А. В. Сторонкин с сотрудниками проводит систематические исследования по разработке термодинамической теории многокомпонентных п>3) двух- и многофазных систем различных типов (жидкость — пар, жидкость — жидкость, твердая фаза — жидкость, жидкость — жидкость — пар, твердая фаза — жидкость — пар, твердая фаза — твердая фаза — жидкость и т. д.). В их основу положены уравнения, являющиеся обобщением дифференциального уравнения Ван-дер-Ваальса для бинарных систем, критерием устойчивости фаз Гиббса относительно бесконечно малых изменений состояния, а также найденные критерии устойчивости гетерогенных систем в целом. Отметим следующие результаты установление условий и границ применимости законов Д. П. Коновалова и М. С. Вревского к многокомпонентным системам вывод закономерностей, описывающих ход складок на поверхностях давления и температуры сосуществования фаз и установление правил, позволяющих предсказывать области расположения составов гомогенных и гетерогенных азеотропов и тройных эвтектик по данным о бинарных системах выявление связи между формой изотермо-изобарных кривых составов и изменениями химических потенциалов при фазовых процессах и установление пра- [c.70]

    Кривые определяют равновесие между двумя фазами ОЛ — пар — жидкость, ОВ — жидкость—твердое тело (лед), ОС — твердое тело — пар. Для двухфазной системы число степеней свободы равно единице, что следует из правила фаз Гиббса  [c.164]

    Коновалова правила (115)—эмпирически установленные закономерности, определяющие равновесные составы жидкости и пара. Впоследствии были получены из уравнений Гиббса — Дюгема, в связи с чем их называют правилами Гиббса — Коновалова. 1-е правило насыщенный пар обогащен тем компонентом, прибавление которого увеличивает общее давление в системе 2-е правило в точках экстремумов общего давления составы жидкости и пара одинаковы 3-е правило при постоянстве температуры и общего давления составы жидкости и пара изменяются симбатно. [c.311]

    Важная термодинамическая функция состояния — энергия Гиббса, характеризующая максимальную полезную работу, которую может произвести система при постоянных давлении и температуре. Эта работа почти всегда связана с химическими реакциями. Если при постоянном давлении химическая реакция сопровождается увеличением объема, система производит относительно малую работу. Например, газы, реагирующие в цилиндрическом сосуде, закрытом поршнем, будут поднимать поршень с положенным на него грузом. Однако энергия, выделяемая или поглощаемая системой в ходе химической реакции, как правило, гораздо больше энергии, соответствующей объемной работе сжатия или расширения. Основная часть такой химической энергии может быть преобразована в полезную, чаще всего электрическую работу. Остальная энергия (внутренняя энергия системы) выражается произведением абсолютной температуры и еще одной функции состояния, энтропии. Этот термодинамический потенциал характеризует неупорядоченность системы (кристалл более упорядочен, чем жидкость, которая в свою очередь более упорядочена, чем газ два газа, разделенные перегородкой, более упорядочены, чем их смесь, и т. д.). [c.254]

    Аналогичное уравнение выведено Фаулером [67] в его частично успешной работе, имевшей целью дать статистическую интерпретацию правила МакЛеода [68], согласно которому величина деленная на разность плотностей чистой жидкости и пара, является постоянной величиной, не зависящей от температуры и давления. Фаулер отождествил с общей энергией поверхности и, используя уравнение Гиббса Гельмгольца, определил поверхностное натяжение, которое численно равно свободной энергии, приходящейся на единицу поверхности. Он показал, что, за исключением состояний системы вблизи критической точки, постоянство параметра Мак-Леода, вероятно, случайно. [c.330]

    Применение правила фаз Гиббса к процессу абсорбции показывает что такая система имеет три степени свободы, т. е. температура, давление и концентрация в одной фазе могут все быть изменены независимо. Если бы установка для абсорбции была снабжена рубашкой с идеально постоянной температурой, которая позволяла бы держать все части системы при постоянной температуре, то процесс газовой абсорбции протекал бы изотермически. С другой стороны, если бы система могла быть термически идеально изолирована от окружающей среды, то процесс мог бы протекать адиабатически и температура во всей системе была бы различная. Тогда изменение температуры с изменением состава жидкости могло бы быть рассчитано с помощью тепловых балансов, так как теплота реакции расходовалась бы только на повышение температуры жидкой и газовой фаз. [c.596]


    Вид фазовых диафамм с неофаниченно смешивающимися твердыми компонентами в жидкой и твердой фазах полностью аналогичен виду диаграмм, описывающих равновесие жидкость-пар. Термодинамическое описание систем жидкость — твердое совпадает с описанием систем жидкость — пар. Аналогично правилам Гиббса—Коновалова формулируются правила Гиббса—Розебума для описания равновесий в системах твердый раствор— жидкий раствор. [c.204]

    Имеется множество доказательств того, что малорастворимое вещество, нанесенное на поверхность раздела жидкость — воздух, растекается в тонкую и в большинстве случаев мономолехулярную пленку. Хотя в принципе рассматриваемые системы описываются такими же термодинамическими зависимостями, как гиббсовские монослои, полностью метод Гиббса к ним ирименить нельзя, так как концентрацию ма-лораство-римого вещества в растворе измерить чрезвычайно трудно. Однако, как правило, концентрация раствора как таковая не интересует исследователей и даже возможность расчета ее изменения по уравнению Гиббса используется мало. Основной упор ири изучении пленок малорастворимых веществ делается на прямые измерения величин, характеризующих собственно поверхность раздела. [c.86]

    Молекулярная теория возникла почти одновременно с мнцел- лярной. Ее сторонниками, в частности Штаудинтером, было показано, что растворение полимеров, как и низкомолекулярных веществ,. идет с уменьшением свободной энергии, т. е. самопроизвольно, тогда как при образовании гетерогенной коллоидной системы свободная энергия возрастает в результате увеличения поверхности дисперсной фазы. Одним из доказательств того, что растворы полимеров термодинамически устойчивы и обратимы, является применение к ним правила фаз Гиббса. Наиболее важной в этой области является работа В. А. Каргина, С. П. Папкова и 3. А. Роговина но исследованию растворов ацетата целлюлозы в различных растворителях. Авторы показали, что в случае ограниченной растворимости ацетата целлюлозы в выбранном растворителе после расслаивания системы на две фазы каждой температуре отвечает определенная концентрация ацетата целлюлозы как в нижнем, так и в верхнем слое. Процесс оказался строго обратимым и термодинамически равновесным, т. е. концентрации слоев были неиз менны при данной температуре, как бы к этой температуре ни подходили— путем нагревания смеси или ее охлаждения. Кроме того, вид диаграммы для этой и других изучаемых авторами систем ацетат-целлюлоза— растворитель был аналогичен диаграммам состоя.ння низкомолекулярных ограниченно смешивающихся жидкостей. [c.150]

    Диаграмма, приведенная на рис. 43, построена по такому же методу, как и диаграмма на рис. 42. Она отвечает тому случаю, когда в системе имеет место образование химического соединения, и характеризуется наличием двух эвтектических точек и Е , а также одной ди-стектической точкой М, отвечающей составу и температуре плавления химического соединения А В , образующегося в металлической системе. Как видно из этой диаграммы, состав соединения может быть легко определен путем простого опускания перпендикуляра из дистектической точки на ось составов. Отсюда легко могут быть определены коэффициенты т и ге в формуле На рис. 44 приведена фазовая диаграмма для случая образования твердого раствора. Оба компонента твердого раствора образуют единую кристаллическую решетку. При охлаждении такого металлического расплава имеет место выпадение кристаллов переменного состава. Как видно из этой диаграммы, кривые ликвидуса I и солидуса 5 являются сопряженными, каждой точке кривой ликвидуса соответствует определенная точка на кривой солидуса. Для того чтобы найти состав фаз, существующих при температуре t, следует провести изотермическую прямую, пересекающую линии солидуса и ликвидуса. Твердый раствор по сравнению с сосуществующей с ним жидкостью более богат тем компонентом, прибавление которого к жидкости повышает точку ликвидуса. Эта закономерность известна под названием первого правила Гиббса — Розебома. [c.150]

    Изложенные выше закономерности растворения полимеров, рассматриваемые но аналогии с процессами смешения двух ограниченно смешивающихся жидкостей, показали применимость правила фаз Гиббса к таким системам. Отсюда следует, что растворы полимеров являются истинными растворами, а не коллоидными системами, к которым неприменимо это правило фаз. Однако высокоасимметрические и большие по размерам молекулы полимеров вносят свои специфические особенности в характеристику самого процесса растворения и свойств образующихся растворов. [c.248]

    Системы из двух или большего числа фаз называют гетерогенными (от гр. heterogenes — разнородный) или многофазными. Смежные фазы гетерогенной системы отделены межфаз-ными поверхностями раздела, на которых свойства системы (состав, плотность, вязкость и т. д.) меняются скачком. Реально свойства фаз меняются на границе не скачком, а на протяжении слоя конечной толщины, составляющем обычно несколько межмо-лекулярных расстояний [134]. Поэтому иногда говорят об отдельной поверхностной фазе, характеризуемой специфическими свойствами (например, вязкостью), обладающей собственной массой и, следовательно, имеющей собственную динамику [134-141]. Однако в макроскопической гидродинамике гетерогенных систем обычно используют представление о разделяющей поверхности, не имеющей толщины. При этом, как правило, пренебрегают сингулярным распределением избыточных (по Гиббсу) величин, так что уравнения сохранения вырождаются в систему граничных условий на поверхности раздела объемных фаз. Примерами гетерогенных систем являются смесь воды со льдом, смесь практически не растворимых друг в друге жидкостей (например, вода-бензол), влажный пар (смесь кипящей жидкости и сухого насыщенного пара), композиционные материалы. [c.215]


Смотреть страницы где упоминается термин Гиббса правило фаз в системах жидкость-жидкость: [c.99]    [c.112]    [c.637]    [c.329]   
Процессы и аппараты химической технологии Часть 2 (2002) -- [ c.145 ]

Процессы и аппараты химической технологии Часть 2 (1995) -- [ c.145 ]




ПОИСК





Смотрите так же термины и статьи:

Гиббс

Гиббса правило фаз

Гиббса системы

Гиббсит

Системы газ жидкость

Системы жидкость жидкость



© 2024 chem21.info Реклама на сайте