Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Атомные орбитали основного состояния

    При построении одноэлектронной молекулярной орбитали для молекулы водорода надо использовать линейную комбинацию ls-атомных орбиталей изолированных атомов водорода. В этом случае атомы одинаковы и основные состояния их также одинаковы. Если молекула образована двумя разными атомами, то при образовании связи одинаковые орбитали не всегда будут участвовать в обоих атомах. Например, в молекуле НС1 у атома водорода в образовании связи будет участвовать орбиталь Is, а у атома хлора орбиталь Is никакого участия в образовании связи не принимает. Это обстоятельство заставляет обратить внимание на важное условие при образовании связи для того чтобы две орбитали могли образовать прочную молекулярную орбиталь, необходимо, чтобы соответствующие им энергии были сравнимы по величине. В приведенном примере ls-орбитали атома хлора соответствует гораздо меньшая энергия, чем ls-орбитали атома водорода, поэтому они комбинироваться не будут. Необходимо также учитывать степень перекрывания между комбинирующимися орбиталями, хотя само по себе перекрывание является недостаточным критерием для образования связи, тем не менее оно важно. Математически перекрывание выражается посредством интеграла перекрывания или ортогональности Если значение велико, то и перекрывание орбиталей и велико. Особую важность имеет перекрывание в направлении связи, но следует сказать, что перекрывание вообще принадлежит к тем факторам, которые необходимо учитывать при выборе атомных орбиталей, участвующих в построении молекулярной орбитали. Необходимо учитывать и симметрию комбинируемых орбиталей. Известно, что р-орбиталь имеет положительную и отрицательную [c.153]


    Лишь существенное перекрывание атомных орбиталей обеспечивает большое и отрицательное значение обменного интеграла и связывающий характер основного (синглетного) состояния молекулы Н2 в методе Гайтлера — Лондона. [c.150]

    Более перспективным методом в настоящее время является метод МО. Отличие его от метода ВС заключается в том, что он исходит из волновой функции отдельного электрона, а не пары электронов, рассматривая каждую молекулу как самостоятельное целое, а не как простую совокупность атомных орбиталей. Основные положения метода МО заключаются в следующем. Природа электронов в молекулах, а также их взаимодействия между собой и с ядрами та же, что и в атомах. Каждый электрон принадлежит молекуле в целом и движется в поле всех ее ядер и электронов. Состояние электрона описывается одноэлектронной волновой функцией Г,. Эта функция называется молекулярной орбиталью. В отличие от одноцентровой атомной орбитали МО многоцентровая, так как число ядер в молекуле не менее двух. Как и для электронов в атоме, Ч определяет плотность электронного облака. Каждой МО соответствует определенная энергия равная сумме кинетической энергии электрона, потенциальной энергии притяжения электрона ко всем ядрам и потенциальной энергии отталкивания электрона на МО от всех остальных электронов. Каждый электрон занимает в молекуле свободную орбиталь с наименьшей энергией. На одной МО не может находиться более двух электронов, при этом спины электронов должны быть антипараллельны. Следовательно, для описания электронной конфигурации состояния молекулы с 2п электронами требуется п МО. Вырожденные орбитали заполняются в соответствии с правилом Гунда. Волновую функцию Ч , характеризующую движение всех электронов в молекуле, можно получить, взяв произведение волновых функций отдельных электронов  [c.233]

    В ненасыщенных системах, содержащих атомы с неподеленной парой электронов, часто наблюдаются переходы, энергия которых меньше, чему я — я-переходов. Например, в карбонильной группе имеется пара электронов на ст-орбитали, пара электронов на я-орбитали и две неподеленные пары электронов атома кислорода, причем одна из этих двух пар занимает несвязывающую л-орбиталь, форма которой такая же, как у атомной р-орбитали. (На рис. 9 а- и я-орбитали группы С=0 не показаны.) Как и в случае производных этилена, узел -орбитали находится в плоскости групп К, и, следовательно, -орбиталь симметрична относительно этой плоскости и мало перекрывается с я-орбиталью. га-Орбиталь расположена по энергии выше других орбиталей основного состояния, и переход электрона на более высокую я -орбиталь (т. е. я -переход) обычно является наиболее длинноволновым синглет-синглетным переходом. Вероятность таких переходов мала (бмакс < 2000), и излучательное время жизни возбужденных я — -состояний сравнительно велико. Поэтому они сильнее, чем л — я-состояния, подвержены процессам безызлучательной дезактивации, и флуоресценция из этих состояний очень малоинтенсивна. Классификацию переходов по я — л- и л — -типам впервые ввел Каша [10]. [c.38]


    Если даже теорема Купманса строго и не выполняется, то все-таки полезно знать, какие пики в фотоэлектронном спектре могут быть связаны с различными молекулярными орбиталями в исходной молекуле. Например, в гл. 3 рассматривались симметрия и строение молекулярных орбиталей NHj. Было установлено, что семь атомных орбита-лей в симметрии Сз . образуют представление, которое сводится к трем неприводимым представлениям и двум неприводимым представлениям е. Восемь валентных электронов NH3 заполняют две из а - и одну из е-молекулярных орбиталей, образуя конфигурацию основного состояния [c.339]

    В настоящий момент единственный способ обойти трудности — это отказаться от всех попыток абсолютного расчета энергий возбуждения и осторожно применить простые квантовомеханические методы к очень приближенным волновым функциям для грубой оценки небольших изменений в энергии. Это могут быть энергетические изменения в результате введения заместителей или искажения формы молекулы, или изменения в характеристических энергиях перехода в ряду алкенов или полиенов. Применяемые в этом случае волновые функции (как функции возбужденных состояний, так и волновые функции основного состояния) почти всегда строятся из минимального числа атомных орбиталей основного состояния, причем нет универсального метода — ни более простого, ни сложного. Хотя они точно определяют соответствующую им симметрию состояния, однако получаемые результаты оказываются совершенно бесполезными для вычисления, например, сипы осциллятора или дипольных моментов. [c.44]

    Можно показать, что если исходить нз базиса , состоящего из N атомных орбиталей, тогда независимо от числа атомов в молекуле можно построить точно N линейно независимых молекулярных орбиталей путем линейной комбинации атомных орбиталей. В случае молекулы водорода из двух 1 атомных орбиталей основного состояния могут быть построены две молекулярные орбитали. Симметрия молекулы требует, чтобы фд и имели один и тот же вес в молекулярной волновой функции, так что молекулярными орбиталями будут  [c.44]

    Энергия, нужная для перемещения электронов углеродного атома с чисто атомных орбиталей (основного состояния) на гибридные орбитали (96 ккал), с избытком компенсируется энергией образования более прочных связей (98,8x4 = 395,2 ккал). [c.29]

    He всегда учитывают, что если волновые функции основного состояния и низколежащих возбужденных состояний молекулы построены из одного и того же ряда атомных орбиталей основного состояния, то молекулярные волновые функции возбужденного состояния обычно гораздо менее удовлетворительны, чем для основного. Этот важный вопрос обсуждается в разделе VI. В том же разделе рассматриваются линейные вариационные функции, отчасти для иллюстрации близкого сходства между волновыми функциями молекулярных орбиталей и валентных связей, отчасти с целью подготовки последующего описания волновых функций, основанных на линейных комбинациях атомных орбиталей. [c.11]

    Для этого рассмотрим совокупность атомов, образующих данную молекулу, и окружим каждый атом сферой такого размера, чтобы на границах атомные функции основного состояния убывали практически до нуля Расположим все атомы подобно их расположению в молекуле, но таким образом, чтобы указанные сферы лишь касались друг друга Решение квантово-механической задачи дпя такой модели можно проводить, как указывалось в гл 1, разделив все пространство на участки (в данном случае на окружающие атомы сферы и промежутки между ними) Тогда в каждой области решение будет соответствовать данному набору атомных орбиталей [c.237]

    Рассмотрим электрон е в поле двух ядер А и В (рис. 18). В положении а на него действует поле, создаваемое обоими ядрами, но основной вклад во взаимодействие вносит ядро А, поэтому состояние электрона близко к тому, которое существует в атоме А. Его можно приближенно описать атомной орбиталью XI атома А аналогично в положении [c.60]

    Рассмотрим молекулу метана — простейшего органического соединения. Атом С находится в центре тетраэдра, атомы Н — в вершинах последнего. Все расстояния С—Н одинаковы, углы НСН равны 109 28. Для метана, как и для воды, молекулярные орбитали многоцентровые. Если записать их как линейные комбинации атомных орбиталей, надо учесть четыре 15-АО водородных атомов д, 5в, 5с и о и четыре внешние орбитали атома углерода 2 , 2р , 2ру и 2р , всего восемь АО (1 -электроны углерода сохраняют атомный характер). Молекулярных орбиталей образуется также восемь четыре связывающих, на которых в основном состоянии молекулы разместятся восемь валентных электронов и четыре разрыхляющие, свободные от электронов. Это обеспечивает высокую стабильность молекулы СН4. Все восемь молекулярных орбиталей метана можно изобразить одной формулой (для упрощения опустим коэффициенты при АО)  [c.99]

    Необходимость оптимизации молекулярного базиса при расчете потенциальных кривых или в более общем случае - потенциальных поверхностей вызвана рядом причин, из которых наиболее существенной является изменение эффективного зарядового состояния атома в молекуле. В молекулярных расчетах полезно иметь в виду также и некоторые спектроскопические характеристики свободных атомов. В молекуле метана валентное состояние атома углерода может быть описано в рамках -гибридизованных орбиталей. Спектроскопическое состояние 5 свободного атома углерода, порождаемое конфигурацией, известно. Его энергия превышает энергию основного Р-состояния на ДЯ = = 4,18 эВ. Валентное состояние атома в молекуле не совпадает с состоянием свободного атома. Тем не менее набор базисных функций на атоме углерода естественно выбрать с тем расчетом, чтобы при решении атомной задачи АЕ воспроизводилась с достаточной точностью. [c.240]


    Сродством атома к электрону называют изменение энергии в процессе присоединения электрона к свободному атому с образованием отрицательного иона при температуре О К А + е = А (атом и ион находятся в своих основных состояниях). При этом электрон занимает низшую свободную атомную орбиталь (НСАО), если ВЗАО занята двумя электронами. Если ВЗАО вырождена и занята не полностью, присоединяемый электрон заселяет ее с соблюдением первого правила Гунда. Из различных методов определения СЭ наиболее прямой и точный — измерение минимальной энергии фотоотрыва электрона от отрицательного иона. [c.39]

    Пусть электрон находится у атома а, и основное состояние молекулярной орбитали будет выражено атомной орбиталью = Теперь примем, что основным состоянием молекулярной орбитали будет атомная орбиталь == 4 xs ,, что указывает на связь электрона только с атомом Ь. Если ядра будут сближаться, то можно считать получающуюся в результате одноэлектронную молекулярную орбиталь, охарактеризованной двумя атомными орбиталями. Это ведет к приближенному расчету посредством ЛКАО. Поэтому можно считать, что одноэлектронная молекулярная орбиталь для электрона равна [c.145]

    В изолированном состоянии каждый из протонов образует свою систему атомных орбиталей, на одной из которых может оказаться электрон. Обозначим соответствуюш,ие им волновые функции основного состояния и Эти функции согласно (3.8) имеют вид [c.56]

    С помощью энергетической диаграммы можно изобразить любое состояние любого многоэлектронного атома. Для этого необходимо рассмотреть основные состояния атомов, т. е. состояния с наименьшей возможной общей энергией, которая представляет собой суммарную энергию всех электронов. Очевидно, что для этого необходимо начинать заполнение атомных орбиталей с наинизшего энергетического уровня. [c.46]

    Начиная с бора, в двухатомных гомоядерных молекулах происходит заполнение молекулярных орбиталей, образованных из атомных р-орбиталей. В молекуле В2 заполнены аг - и а 25-орбитали, а два следующих электрона попадают на орбитали таких орбиталей две и они совершенно эквивалентны, то в соответствии с первым правилом Хунда электроны оказываются на разных орбиталях. Поэтому молекула В2 имет спин 1, а не О, как у рассмотренной ранее молекулы Ь(2. Состояние со спином, равным 1, называется триплетным (три возможных состояния суммарного спина электрона) в отличие от синглетных состояний с единственным спиновым состоянием, отвечающим спину, равному нулю. Так, синг-летным является основное состояние молекулы 2, у которой два дополнительных электрона завершают заполнение молекулярных орбиталей Я2р- [c.70]

    Таким образом, у.1(х2) — одноэлектронная волновая функция (собственная функция водородоподобного атома) или атомная орбиталь, определяемая квантовыми числами п, Iи гщ. В нулевом приближении волновая функция атома является произведением одноэлектронных волновых функций (атомных орбиталей водородоподобного атома), а энергия атома — суммой одноэлектронных энергий. Насколько хорошо нулевое приближение Согласно (11.5) для атома гелия в основном состоянии [c.44]

    В качестве АО можно использовать атомные функции невозбужденных состояний. Напомним, что в одноэлектронном приближении основное состояние атома без учета конфигурационного взаимодействия описывается теми атомными орбиталями, которые соответствуют низшим значениям энергии. Эти АО принято называть занятыми. Остальные орбитали, получающиеся при решении уравнений самосогласованного поля, называются свободными или возбужденными. Если в атоме с номером А имеется Пл электронов, и АО, описывающие их состояния, суть .... 1па , то МО записывают в виде [c.33]

    Метод МО представляет собой естественное распространение теории атомных орбиталей (АО) на поведение электронов в молекуле. Предполагается, что электроны в молекуле находятся на молекулярных орбиталях, охватывающих все ядра атомов в молекуле, и МО занимает весь объем молекулы. Таким образом, метод МО рассматривает молекулу и другие устойчивые многоатомные системы как многоатомный атом , в котором электроны располагаются на орбиталях, называемых молекулярными. Так как на электрон молекулярной орбитали воздействует поле многих ядер, то образование МО из АО приводит к уменьшению энергии системы. Представим, что атом А, имеющий свободный или спаренный электрон, приближается к атому В. Из двух изолированных атомов образуется система, состоящая из двух ядер а и й, в поле которых находятся электроны этих атомов. Если молекула состоит из п атомов с суммарным числом электронов М, то состояние молекулы можно представить системой из п силовых центров, в поле которых находится N электронов. Такое представление о молекуле как о взаимодействующем коллективе всех ядер и электронов лежит в основе теории метода МО. Основные положения  [c.48]

    Книга всесторонне и доходчиво, а самое главное методологически правильно знакомит с теорией химической связи и результатами ее применения к описанию строения и свойств соединений различных классов. Сначала изложены доквантовые идеи Дж. Льюиса о валентных (льюис овых) структурах и показано, что уже на основе представлений об обобществлении электронных пар и простого правила октета при помощи логических рассуждений о кратности связей и формальных зарядах на атомах удается без сложных математических выкладок, как говорится на пальцах , объяснить строение и свойства многих молекул. По существу, с этого начинается ознакомление с пронизывающими всю современную химию воззрениями и терминами одного из двух основных подходов в квантовой теории химического строения-метода валентных связей (ВС). К сожалению, несмотря на простоту и интуитивную привлекательность этих представлений, метод ВС очень сложен в вычислительном отношении и не позволяет на качественном уровне решать вопрос об энергетике электронных состояний молекул, без чего нельзя судить о их строении. Поэтому далее квантовая теория химической связи излагается, в основном, в рамках другого подхода-метода молекулярных орбиталей (МО). На примере двухатомных молекул вводятся важнейшие представления теории МО об орбитальном перекрывании и энергетических уровнях МО, их связывающем характере и узловых свойствах, а также о симметрии МО. Все это завершается построением обобщенных диаграмм МО для гомоядерных и гете-роядерных двухатомных молекул и обсуждением с их помощью строения и свойств многих конкретных систем попутно выясняется, что некоторые свойства молекул (например, магнитные) удается объяснить только на основе квантовой теории МО. Далее теория МО применяется к многоатомным молекулам, причем в одних случаях это делается в терминах локализованных МО (сходных с представлениями о направленных связях метода ВС) и для их конструирования вводится гибридизация атомных орбиталей, а в других-приходится обращаться к делокализованным МО. Обсуждение всех этих вопросов завершается интересно написанным разделом о возможностях молекулярной спектроскопии при установленни строения соединений здесь поясняются принципы колебательной спектро- [c.6]

    Далее в методе МОХ предполагается, что можно пренебречь всеми взаимодействиями между несмежными атомами члены и отвечающие этим взаимодействиям, принимаются равными нулю. Величину аг считают равной потенциалу ионизации атомных орбиталей изолированного атома. Все члены вида и для взаимодействующих атомов считаются одинаковыми (что вполне верно лишь для симметричных молекул определенного типа). Интегралы перекрывания 5гг=1, а интегралы принимаются равными нулю, если г=ф5. Это значит, что перекрыванием орбиталей пренебрегают. Такое допущение справедливо, когда атомы г и з находятся далеко друг от друга, но, вообще говоря, оно довольно грубо. В итоге всех этих упрощений из детерминанта получают характеристическое уравнение, имеющее п корней, и каждый корень имеет вид = а-Ьт,р. Наименьшее значение корня отвечает основному состоянию остальные приблизительно представляют возбужденные состояния. Положительные значения т/ характерны для связывающих орбиталей, отрицательные — для разрыхляющих. Низшему энергетическому уровню соответствуют наибольшие положительные значения т,- (аир отрицательны). Значение кулоновского интеграла а принимается за начало отсчета. Первый потенциал ионизации пи-электронов приближенно характеризует энергию высшей заполненной молекулярной орбитали. [c.116]

    Теперь можно перейти непосредственно к систематике первых десяти МО молекулы- Н . Первые Две, образованные линейной комбинацией атомных орбиталей Ь, уже рассмотрены нами. Молекулярная орбиталь основного состояния + (нормировочный множитель опущен) может быть записана и так = 1 +1 - Так как в состоянии магнитное число /и, =0, то и =0, следовательно, эта орбиталь ст-типа. Символ стЬ указывает и на состояние разъединенных атомов, из орбиталей которых она построена. Как видно на рис, 35, стГ. -орбиталь положительна во всех областях пространства и поэтому при инверсии в центре не изменяет знака эта орбиталь — четная. Ее символ ст . В то же время она связывающая и иногда ее обозначают как Следующая орбиталь. Это тоже ст1л-орбиталь, но, как видно из рис. 35, при инверсии в центре она изменяет знак, поэтому обозначается ст 1. Цен1р симметрии является для ст1 орбитали узловой точкой. Через него проходит перпендикулярно оси молекулы узловая плоскость, где электронная плотность равна нулю. Вследствие этого ст1.у-ор-биталь — разрыхляющая, что и обозначается звездочкой еправа вверху ст 1л . Обе рассмотренные МО относятся к первому квантовому слою. Следующая пара молекулярных орбиталей и ст 25 образована из 2.У атомных орбиталей. Эти МО аналогичны рассмотренным МО первого квантового слоя и отличаются только более высокой энергией. [c.106]

    Основная проблема метода МО — нахождение волиопых функций, описывающих состояние электронов на молекулярных срб 1-талях. В наиболее распространенном варианте этого метода, получившем сокращенное обозначение метод МО ЛКАО (молекулярные орбитали, линейная комбинация атомных орбиталей), эта задача решается следующим образом. [c.143]

    Величина Раа приблизительно равна орбитальной энергии изолированного атома водорода. Тогда, исходя из формул (77а) и (776), можно сказать, что при образовании молекулы Иг атомные уровни энергии расщепляются на молекулярные, лежащие на энергетической шкале выше и ниже исходных атомных (рис. 32). При этом подъем уровня ег больше падения ги Так как в молекуле водорода всего два электрона, то они будут в основном состоянии занимать МО, энергия которой ниже, т. е. ф5. Эта орбиталь называется связывающей, а орбиталь фл — антисвязывающей (разрыхляющей). Далее мы дадим более точные определения связывающих и антисвязывающих МО, [c.190]

    Для расчета электронной структуры и электронной плотности на атомах серы и кислорода был использован полуэмпирический вариант метода ССП МО ЛКАО в приближении полного пренебрежения дифференциальным перекрыванием (ППДП) без учета вклада 3(1-А0 серы. Геометрия основного состояния диметилсуль-фоксида известна достаточно хорошо, имеет точечную группу симметрии Сз. В качестве базисных функций были взяты Зз- и Зр-орбитали серы и 2з-н 2р-орбитали кислорода, с целью сокращения базисного набора одна зр —гибридная орбиталь углерода от каждой группы СН3. Атомные параметры взяты т литературных данных. При расчете циклических сульфоксидов изменяли угол связи между углеродными атомами от 96,4 до 120°. [c.42]

    При формировании качественных представлений об электронном строении атомов важная роль принадлежит приближению центральносимметричного потенциала, на основе которого атомную орбиталь записывают в виде произведений радиальной и сферической функций. Принцип Паули и приближение центрально-симметричного поля позволяют понять оболочечное строение атома и установить конфигурацию основного состояния. В тех случаях, когда можно ожидать несколько конкурирующих конфигураций, вопрос их выбора рещается либо экспериментально, либо численными расчетами в приближении Хартри — Фока. Лишь в исключительных случаях для установления терма основного состояния (см. гл. 3, 7) требуется построение более сложной, по сравнению с методом Хартри — Фока, волновой функции в форме наложения конфигураций. Эту логику рассуждений переносят и на теорию злектрон-ного строения молекул, однако здесь возникают новые вопросы. [c.187]

    Основное состояние водородоподобного атома — состояние с наимень-щей энергией, описывается атомной орбиталью Ь (волновая функция Ххоа, 72 = 1,1 = % Ш ==0). Состояние это невырождено. Соответствующая ему энергия (первый энергетический уровень) согласно (4.5) в атомных единицах [c.24]

    С точки зрения приведенного выше представления о молекулярных орбиталях в молекуле этилена каждый атом углерода должен использовать sp -opбитaли для образования связей с тремя атомами. Эти р -орбитали возникают в результате гибридизации 2з-, 2рх - и 2ру -электронов после перехода одного -электрона на р-орбиту, как было показано в разд. 1.3. Можно полагать, что любой атом углерода, связанный с тремя разными атомами, использует для этих связей sp -opбитaли. Таким образом, каждый атом углерода этилена участвует в образовании трех 0-связей по одной с каждым из двух атомов водорода и одной с другим атомом углерода. Поэтому каждый атом углерода имеет еще один электрон иа орбитали 2рг, которая в соответствии с принципом максимального отталкивания перпендикулярна плоскости р -орбиталей. Две параллельные 2 рг-ор-битали могут перекрываться, образуя две новые орбитали, связывающую и разрыхляющую (рис. 1.5). В основном состоянии оба электрона находятся на связывающей орбитали, а разрыхляющая орбиталь остается вакантной. Молекулярные орбитали, образованные при перекрывании атомных орбиталей, оси которых параллельны, называют л-орбиталями, если они являются связывающими орбиталями, и. п -орбиталями, если они являются разрыхляющими орбиталями. [c.22]

    Вопрос о возможном наличии эквивалентных орбиталей у атома, имеющего в основном состоянии электроны на определенных атомных орбиталях, помогает решать теория групп. Мы видели, что у атома с з-, р -, р -, р -орбиталями могут быть четыре эквивалентные орбитали, приводящие к зр -гибриднзации. зр -Гибридизация имеет место в молекуле СН4 с группой симметрии Т . То, что у электронных-облаков атома углерода возможна такая симметрия, можно установить исходя из данных теории групп. [c.88]


Смотреть страницы где упоминается термин Атомные орбитали основного состояния: [c.44]    [c.44]    [c.576]    [c.19]    [c.221]    [c.170]    [c.17]    [c.95]    [c.126]    [c.125]   
Физическая химия. Т.1 (1980) -- [ c.478 ]




ПОИСК





Смотрите так же термины и статьи:

Орбиталь атомная

Основное состояние



© 2025 chem21.info Реклама на сайте