Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Специфичность, в образовании связи трипсина

    Об использовании экзопептидаз, таких как аминопептидаза и карбоксипептидаза, для определения аминокислотной последовательности вблизи N- и С-концов белков говорилось в разд. 23.3.4. Эндопептидазы являются протеолитическими ферментами, которые избирательно расщепляют пептидные связи в точках, удален ных от концов белковой молекулы. Эндопептидазы сильно различаются по своей специфичности. Обычно сами аминокислотные остатки с любой стороны расщепляющейся пептидной связи являются наиболее важными детерминантами специфичности протеолитических ферментов. Так, трипсин разрывает пептидные связи, в образовании которых участвует карбонильная группа остатков Arg или Lys схемы (25), (26) . [c.274]


    При остром панкреатите, когда трипсин и другие ферменты из пораженной поджелудочной железы вымываются в кровь, уровень их в крови соответствует размерам некротического участка. В этом случае определение активности трипсина в сыворотке крови является надежным ферментным тестом при диагностике острого панкреатита. Следует отметить, что субстратная специфичность трипсина ограничена разрывом только тех пептидных связей, в образовании которых участвуют карбоксильные группы лизина и аргинина. [c.421]

    Трипсин и химотрипсин обладают наиболее высокой специфичностью по отношению к субстрату, что и используется для определения стерической однородности пептидов. Трипсин расщепляет только пептидные связи, в образовании которых принимают участие карбоксильные группы аргинина и лизина. Гидролиз протекает очень медленно или вообще не идет, если эта аминокислота является N-концевой или второй от N-конца пептида. Не расщепляются пептидные связи, образованные со-за-мещенными аминокислотами, и связи Lys-Pro и Arg-Pro. Неспецифический гидролиз происходит крайне редко (ср. [2678]). Химотрипсин расщепляет главным образом пептидные связи, в образовании которых принимает участие карбоксильная группа остатка ароматической аминокислоты. Иногда имеет место и неспецифический гидролиз, например по амидным связям лей-цил—аминокислота. На гидролиз, катализируемый химотрипсином, природа всей молекулы пептида оказывает большее влияние, чем на расщепление трипсином (ср. [2678]). [c.403]

    Другой весьма специфичный тип белок-белкового взаимодействия представлен ингибированием трипсина маленьким белковым ингибитором из поджелудочной железы быка. Последний белок состоит из 58 аминокислотных остатков, образующих весьма компактную структуру, содержащую три дисульфидных связи. Вследствие такой компактности белок не очень чувствителен к протеолитической атаке. Боковой радикал Lys-15, однако, полностью экспонирован и представляет собой участок взаимодействия с трипсином, а также его ингибирования. Обычный каталитический механизм действия сериновых протеиназ , представителем которых является трипсин, предполагает образование нековалентного комплекса, за которым следует ацилирование Ser-195 фермента карбонильной группой лизина или аргинина и высвобождение первого продукта реакции. Завершает процесс деацилирование ацилфермента. [c.563]

    Химотрипсин обладает более широкой субстратной специфичностью, чем трипсин. Он катализирует гидролиз не только пептидов, но и эфиров, амидов и других ацилпроизводных, хотя наибольшую активность он проявляет по отношению к пептидным связям, в образовании которых принимают участие карбоксильные группы ароматических аминокислот — фенилаланина, тирозина и триптофана. [c.363]


    До сих пор ничего не говорилось о специфичности ферментов. Если трипсин, химотрипсин и эластаза обладают идентичным каталитическим механизмом, то чем они отличаются друг от друга Ответ заключается в том, что они селективны к характеру боковой цепи, следующей за той, в которой они разрывают пептидную связь. В уравнениях (21-1)-(21-3) соответствующие радикалы обозначены К и находятся непосредственно перед карбонильной группой связи, подлежащей разрыву. Каждый из трех рассматриваемых ферментов имеет на своей поверхности карман специфичности , в который входит указанный радикал при связывании субстрата. Этот карман специфичности в трипсине длинный и глубокий, с отрицательным зарядом на дне от ионизованной аспарагиновой кислоты (рис. 21-19, а). Благодаря этому трипсин благоприятствует разрыву белковой пептидной цепи по связи, следующей за положительно заряженными радикалами лизина или аргинина. В химотри тсине карман специфичности шире (рис. 21-19, б) и образован исключительно гидрофобными радикалами, поэтому химотрипсин благоприятствует разрыву пептидной связи, следующей за объемистым ароматическим радикалом, как, например, [c.322]

    Ферменты способны также катализировать образование связей, которые первоначально отсутствовали в изучаемой молекуЛ(е [131, 333]. В структурных исследованиях все боль- шее применение находят протеолитические ферменты, однако при этом не было получено никаких доказательств образования новых связей в сколько-нибудь заметных количествах. Тем не менее по крайней мере для двух ферментов с различной специфичностью — трипсина и химотрипсина, которые вряд ли способны вызвать образование о Гной и той же связи, потребовалось доказать отсутствие образования новых связей. [c.166]

    Трипсин обладает сравнительно узкой субстратной специфичностью, разрывая пептидные связи, в образовании которых участвуют карбоксильные группы лизина и аргинина, т. е. основных аминокислот. [c.363]

    Трипсин проявляет высокую специфичность, расщепляя лишь пептидные связи, в образовании которых принимают участие основные аминокислоты, такие, как лизин и аргинин. Наряду с пептидными трипсин гидролизует амидные и сложноэфирные связи, образованные лизином и аргинином, причем амиды расщепляются быстрее пептидов, а сложные эфиры — еще быстрее. [c.305]

    Мощными гидролитическими агентами для белков являются протеолитические ферменты (протеазы) пепсин (фермент желудка), трипсин (фермент поджелудочной железы), пептидазы (ферменты кишечника). Действие ферментов специфично каждый расщепляет пептидную связь, образованную только одной определенной аминокислотой. [c.336]

    Многие ферменты обладают групповой специфичностью. Они катализируют расщепление связей, образованных определенными -функциональными группами (например, эфирную связь). Такая групповая специфичность может быть абсолютной или относительной. Ферменты с абсолютной групповой специфичностью действуют только на один род функциональных групп. Ферменты с относительной групповой специфичностью действуют преимущественно на один тип связи, например амидную, но при этом могут действовать и на другой тип связи (например, эфирную). Примером последнего типа может служить фермент пищеварительного тракта — трипсин. [c.346]

    Трипсин — фермент, чаще всего используемый для получения одного из двух наборов перекрывающихся пептидов, поскольку,, во-первых, он почти количественно расщепляет чувствительные к его действию связи во-вторых, его можно получить свободным от примесей других протеолитических ферментов и, в-третьих, субстратная специфичность трипсина такова, что обычно обеспечивается образование пептидов, удобных по своим размерам для дальнейшего структурного анализа. Второй набор пептидов обычно получают с помощью химотрипсина или пепсина, которые дают, как [c.179]

    Каждый из этих ферментов атакует вполне определенные пептидные связи. Трипсин катализирует гидролиз пептидных связей, карбонильная группа которых принадлежит одной из основных аминокислот, обычно аргинину или лизину. Пепсин и химотрипсин предпочтительно катализируют гидролиз тех пептидных связей, в образовании которых участвуют ароматические аминокислоты, в частности триптофан, тирозин и фенилаланин. Среди протеолитических ферментов наиболее высокой специфичностью обладает трипсин поэтому именно он наиболее подходит для такого рода анализа. Ясно, однако, что при помощи только одного, пусть даже абсолютно специфичного, фермента невозможно определить полную последовательность аминокислот в полипептиде. Если, например, триптическое расщепление полипептида дало пять фрагментов (пептидов), в сумме соответствующих всей цепи, и если даже для каждого из них удалось установить аминокислотную последовательность, то это еще не все требуется узнать, в каком порядке эти пептиды располагались в нативном полипептиде. Чтобы узнать это, необходимо получить другие пептиды, которые перекрывались бы с первыми. Главное преимущество ферментативного гидролиза — специфичность реакции расщепления в отношении природы расщепляемых пептидных связей накладывает в то же время строгое ограничение на применимость этого метода. В идеале желательно было бы, например, иметь возможность расщеплять иногда те пептидные связи, которые в норме трипсином не атакуются, или, наоборот, предохранять от расщепления связи заведомо чувствительные. Недавно были предложены некоторые модификации методики, которые позволяют в какой-то мере решить эту задачу. Так, например, реакция е-аминогруппы лизина с этилтрифтортиоацетатом в слабо щелочном растворе дает блокированный по аминогруппе остаток, пептидная связь которого не атакуется трипсином [c.90]


Рис. 8.23. Основной элемент взаимодействия панкреатического ингибитора трипсина с трипсином состоит в образовании электростатической связи между лизином-15 ингибитора и ас-партатом-189 фермента. Кроме того, —N113-группа лизина-15 соединяется водородной связью с несколькими атомами кислорода в субстрат-специфичном кармане молекулы трипсина. Рис. 8.23. <a href="/info/64408">Основной элемент</a> взаимодействия <a href="/info/102113">панкреатического ингибитора</a> трипсина с трипсином состоит в образовании <a href="/info/108061">электростатической связи</a> между лизином-15 ингибитора и ас-партатом-189 фермента. Кроме того, —N113-<a href="/info/1036164">группа лизина</a>-15 соединяется <a href="/info/917">водородной связью</a> с несколькими атомами кислорода в <a href="/info/1820480">субстрат-специфичном</a> кармане молекулы трипсина.
    Не менее поучительно сопоставление сорбционных функций а-химотрипсина и другой сериновой протеазы — трипсина. Размеры и форма субстратсвязывающего (сорбционного) участка в активных центрах обоих ферментов примерно одинаковы [3]. Единственное различие в первичной структуре полипептидных фрагментов, образующих гидрофобный карман , состоит в том, что в а-химотрипсине остаток 189 — это серин (см. рис. 9), а в трипсине в соответствующем положении находится отрицательно заряженная аспарагиновая кислота. Это приводит к тому, что в отличие от а-химотрипсина трипсин обнаруживает специфичность к гидролизу пептидных связей, образованных положительно заряженной аминокислотой (Lys, Arg). Сорбция положительно заряженного субстрата на ферменте (вблизи каталитически активного нуклеофила активного центра) происходит в данном случае за счет электростатических взаимодействий (рис. И, б). [c.35]

    Приведенный перечень наиболее часто употребляемых продажных лигандов с групповой специфичностью, которые нам казалось необходимым хотя бы вкратце охарактеризовать, далеко не исчерпывает всего пх многообразия. Сюда не вошли, например, аминокислоты, различные сахара и амииосахара, производные холевой кислоты, спермин, протамнн, гистон, биотин и авидин, ингибиторы трипсина, апротинин, желатин и др. В этот перечень не были включены и тпо-ловые сорбенты для ковалентной хроматографии, в которой используется образование временных связей между лигандом и веш,е-ством. Такие сорбенты будут рассмотрены отдельно. [c.375]

    Наиболее специфичным из ферментов является трипсин. Он расщепляет только пептидные связи, образованные карбоксилом аргинина и лизина. Его действие можно еще более ограничить, если динитрофени-лировать в-аминную группу лизина. Химотрипсин расщепляет связи, образованные ароматическими аминокислотами. Недавно было обнаружено, что он гидролизует и лейциновые пептиды. Менее специфичны папаин, пепсин и субтилизин. Последний позволяет, однако, получать смесь низкомолекулярных пептидов, что часто оказывается удобным прн исследованиях. [c.516]

    Вследствие высокой специфичности по отношению к пептидным связям, образованным карбоксильными группами лизина и аргинина, наиболее часто применяют трипсин. Однако известно несколько случаев, когда скорость гидролиза трипсином подобных связей неодинакова иди когда в процессе гидролиза сохраняется С-концевая пептидная связь, образованная лизином [3]. Трипсин часто бывает загрязнен химотрипсином, который обладает меньшей специфичностью. В результате побочного действия химотрип-сина могут получиться вводящие в заблуждение пептидные фрагменты. Примеси химотрипсина могут быть в значительной степени уменьшены путем инактивации химотрипсина разбавленной НС1 [131] или при обработке мочевиной, которая необратимо денатурирует химотрипсин и не действует на трипсин [69]. Некоторые нативные белки (например, рибонуклеаза), обладающие жесткой третичной структурой, не подвергаются действию трипсина и химотрипсина. Денатурация посредством нагревания, обработки раствором мочевины или окислением надмуравьиной кислотой делает их доступными Действию протеолитических ферментов. [c.395]

    Для расщепления полипептидной цепи на отдельные фрагменты можно использовать несколько методов. Один из широко распространенных методов-это частичный ферментативный гидролиз полипептида под воздействием пищеварительного фермента шрнисмка. Каталитическое действие этого фермента отличается высокой специфичностью гидролизу подвергаются только те пептидные связи, в образовании которых участвовала карбоксильная группа остатка лизина или аргинина независимо от длины и аминокислотной последовательности полипептидной цепи (табл. 6-6). Число более мелких пептидов, образующихся под действием трипсина, можно, следовательно, предсказать, исходя из общего числа остатков лизина и аргинина в исходном полипептиде. Полипептид, в котором содержатся пять остатков лизйна и (или) аргинина, при расщеплении трипсином обычно дает шесть более мелких [c.148]

    Для обнаружения рацемизации можно с успехом использовать ферментативные методы. С этой целью применяли ферменты, специфичные для гидролиза пептидных связей в таких пептидах, в которых вновь образующиеся карбоксильные группы взаимодействуют с а-аминокислотными остатками Ь-конфи-гурации [43]. Гистидилфенилаланиларгинилтриптофилглицин был синтезирован из Ь-аминокислот с применением в качестве конденсирующегося реагента N. М -дициклогексилкарбодиимида [44]. После обработки пентапептида трипсином произошло образование гистидилфенилаланиларгинина и триптофилглицина вместе с большим количеством негидролизованного вещества, как это было показано с помощью хроматографии на бумаге. Расщеплению подверглось только 37 /о пентапептида. Фермент лейцинаминопептидаза привел к образованию гистидина, фенилаланина, аргинина, триптофана и глицина в следующих молярных соотношениях 1 1 0,4 0,4 0,4. Таким образом, оба ферментативных метода показывают, что в продукте реакции содержалось только около 40% от исходного оптически чистого Ь-изомера. Лейцинаминопептидаза также применялась для того, чтобы показать, что октапептид, занимающий положения б—13 в молекуле АКТГ, был синтезирован без рацемизации [45]. [c.182]

    Все проферменты поджелудочной железы активируются по сходному механизму для превращения в активную форму необходимо расщепление пептидной связи, образованной остатком аргинина или лизина около начала пептидной цепи предшественника. Именно это расщепление и производится трипсином или иным протеолитическим ферментом, осуществляющим активацию. Механизм действия всех таких ферментов, по-видимому, одинаков в основе его лежит гидролиз точно определенной пептидной связи, производимый в соответствии со специфичностью гидролизирующего фермента, причем необходима специфичность именно такого типа, как та, которой обладает трипсин. В трипси-ногене быка, например, разрывается связь между 6- и 7-амино-кислотными остатками, в химотрипсиногене — при действии трипсина — между 15-м и 16-м. Активация трипсиногена сопровождается отщеплением от белка гексапептида при активировании же химотрипсиногена фрагмент не отщепляется, так как его первый остаток остается соединенным с основной частью молекулы дисульфидной связью. [c.94]

    Подобно трипсину, химотрипсин наиболее стабилен при pH 3, а его действие на белки имеет оптимум в зоне pH 7—9. В концентрированных растворах при pH 7,8 фермент претерпевает автолиз с образованием двух различных активных форм р- и ухимотрип-сина. Химотрипсин обладает более широкой специфичностью, чем трипсин он очень легко расщепляет пептидные, амидные и сложноэфирные связи, в образовании которых участвуют карбоксильные группы ароматических аминокислот — тирозина, триптофана и фенилаланина. Несколько медленнее он расщепляет связи, образованные карбоксильными группами лейцина, метионина, глутаминовой и аспарагиновой кислот. Связи ароматических аминокислот с пролином устойчивы к действию фер.мента. [c.124]

    Протеолитические ферменты, катализирующие гидролиз пептидных связей, например трипсин и субтилизин, различаются по субстратной специфичности. Обратите внимание на аминокислоты, участвующие в образовании пептидных связей, гидролизуемых указанными ферментами. Обьясните, какой из этих ферментов, демонстрирующих групповую специфичность, обладает узкой, а какой — наиболее широкой субстратной специфичностью. Трипсин (фермент пищеварительного тракта)  [c.345]


Смотреть страницы где упоминается термин Специфичность, в образовании связи трипсина: [c.289]    [c.289]    [c.282]    [c.97]    [c.182]    [c.250]    [c.113]    [c.422]    [c.322]    [c.396]    [c.749]    [c.185]    [c.88]    [c.163]    [c.344]    [c.176]   
Успехи органической химии Том 1 (1963) -- [ c.165 ]




ПОИСК





Смотрите так же термины и статьи:

Трипсин

Трипсин связи Lye



© 2025 chem21.info Реклама на сайте