Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Общие свойства изобарного потенциала

    В гл. IV, 4 показан общий способ расчета любого экстенсивного свойства раствора. Расчет основан на представлении о парциальных мольных величинах компонентов. Так как изобарный потенциал — экстенсивное термодинамическое свойство раствора, то для него справедливы уравнения (IV.2), (IV.6), (IV.7), (IV.8) и (IV. 10). В данном случае в уравнении [c.113]


    IV.9, Общие свойства изобарного потенциала [c.74]

    На вопрос о том, возможен или невозможен процесс при данных условиях, дает ответ второе начало термодинамики, которое, как и первое начало, оперирует лишь с начальным и конечным состояниями системы. Чтобы по заданным начальному и конечному состояниям системы определить направление перехода системы из одного состояния в другое при данных условиях, надо найти такие термодинамические свойства системы, которые при любом самопроизвольном процессе при данных условиях или увеличиваются, или уменьшаются, причем при равновесном состоянии эти свойства достигают соответственно максимального или минимального значений. Второе начало термодинамики показывает, что такими свойствами системы являются в общем случае энтропия (5) и в частных случаях изохорный (F) и изобараный (Z) потенциалы. Энтропия является критерием возможности направления и предела течения процессов в изолированных системах, а изохорный потенциал при V, Т — onst и изобарный потенциал при Р, Т = onst — в неизолированных системах. Прежде чем перейти к более подробному анализу этих свойств системы, необходимо рассмотреть содержание и смысл второго начала термодинамики. [c.82]

    Поверхностные свойства растворов. Поверхностные свойства растворов отличаются от поверхностных свойств чистых жидкостей прежде всего тем, что состав поверхностного слоя в той или иной степени отличен от состава внутренних слоев раствора. Поверхностное натяжение раствора может сильно зависеть от состава поверхностного слоя, и самопроизвольно протекающим процессом будет увеличение содержание в поверхностном слое того из компонентов раствора, от прибавления которого уменьшается поверхност-. нов натяжение и тем самым понижается общий изобарный потенциал системы. Этому процессу противодействует процесс диффузии, обусловленный тепловым движением молекул, способствующий выравниванию концентраций по всем участкам раствора. В результате этих двух противоположно направленных процессов и достигается равновесие. При равновесии различие между составом поверхно- [c.355]

    Термодинамическим свойствам раствора < общ, // бш, 5общ, У бт и т. п. соответствуют парциальные мольные величины -го компонента G, — парциальный мольный изобарный потенциал //,—парциальная мольная энтальпия S, — парциальная мольная энтропия и, —парциальный мольный объем и т. п. [c.205]


    Для систем, состоящих из реальных фаз, фазовое равновесие не может быть рассчитано априори и исследуется экспериментально. По опытным данным может быть найдена зависимость изобарного потенциала от параметров состояния. Это не означает, однако, что уравнение состояния (1-130) для таких систем не имеет практического значения. С помощью этого уравнения и некоторых его частных форм представляется возможным, как это будет показано ниже, рассчитывать одни свойства равновесных систем по данным о других. Уравнение состояния позволяет также выявить ряд важных качественных закономерностей, общих для всех равновесных систем. [c.108]

    Основным термодинамическим свойством, характеризующим состояние компонента в растворе, является его химический потенциал. Он одинаков во всех равновесных фазах компонента. При неравенстве химических потенциалов наблюдается соответственно растворение фазы или выделение ее из раствора. В общем случае химический потенциал функция давления р, температуры Г, массы компонентов п,-, поверхности фаз 5, электрического заряда е и т. д. Его можно выразить как частную производную внутренней энергии и, энтальпии Н, изохорного Р и изобарного О потенциалов  [c.54]

    Химический потенциал. Так как изобарный потенциал является экстенсивным свойством, можно применить к нему общие уравнения (16) и (17) и получить [c.170]

    Как видим, появление дополнительно еще только одной жидкой фазы существенно усложняет общую картину фазового равновесия в двухкомпонентной системе. Очевидно, образование промежуточных твердых фаз в двухкомпонентной системе также должно внести самостоятельный элемент в диаграмму состояния. Как правило, промежуточные твердые фазы формируются на основе определенных химических соединений, которые могут плавиться конгруэнтно либо распадаться в результате перитектического превращения. Обсуждение характера концентрационной зависимости изобарно-изотермического потенциала промежуточных, фаз следует вести в соответствии со строго термодинамически обоснованным понятием фазы. При этом требуется уточнение принадлежности растворов на основе существующих в системе определенных химических соединений к одной или разным фазам. Как известно, природа фаз определяется особенностями межмолекулярного взаимодействия. Последнее в первую очередь обусловлено сортом частиц, их образующих, так как именно природа частиц, образующих данную фазу, обусловливает величину и характер сил обменного взаимодействия, что приводит к формированию вполне определенных химических йязей. Если растворы и фазы различаются родом образующих их частиц (по сортности), то, следовательно, их химические составы (речь идет об истинных составах) качественно различны. Следствием этого является тот факт, что термодинамические характеристики фаз, различающихся родом частиц, описываются разными фундаментальными уравнениями. Это очень важное заключение с необходимостью приводит к выводу о том, что такие растворы даже в пределах одной гомогенной системы должны рассматриваться как самостоятельные фазы. Различие между зависимостями свойств растворов, имеющих качественно иные химические составы, от параметров состояния должно проявляться если не в виде функций, то по крайней мере в значениях постоянных величин, фигурирующих в уравнениях этих функций и отражающих специфику меж-частичного взаимодействия, а следовательно, и химическую природу сравниваемых растворов. В случае растворов или фаз переменного состава данному качественному составу или, иначе говоря, данному набору частиц по сорту отвечает конечный интервал Голичественных составов в данной системе, в пределах которого только и существует строго определенный единственный вид зависимости термодинамических и иных свойств от параметров состояния. Положение о том, что характер зависимости свойств от параметров состояния определяется качественным химическим составом, весьма существенно и названо А. В. Сторонкиным принципом качественного своеобразия определенных химических соединений. Значение этого принципа заключается в том, что его использование позволяет четко определить принадлежность рас- [c.293]

    Общие закономерности, устанавливающие влияние разделяющего агента на коэффициент относительной летучести заданной бинарной смеси, могут быть выведены [15] на основании анализа свойств функции Ф [см. уравнение (86)], пропорциональной неидеальной доле изобарного потенциала смешения. Для трехкомпонентной системы, состоящей из компонентов 1 и 2 заданной смеси и разделяющего агента  [c.36]

    Из уравнения Гиббса — Гельмгольца следует, что при Т = ОК АО = АН, т. е. ДС- и ДЯ-кривые сходятся в одной точке. Опыт показывает, что не только при абсолютном нуле, но и вообще при очень низких температурах эти две кривые для многих реакций, в которых участвуют только твердые вещества, асимптомотически сближаются и идут почти горизонтально это говорит о том, что при очень низких температурах свойства твердых тел мало зависят от температуры. В. Нернст высказал утверждение, что в конденсированных системах вблизи абсолютного нуля АО- и АН-кривые имеют общую касательную, параллельную оси температур (тепловая теорема Нернста) . Математически это означает, что пределы производных теплового эффекта и изобарного потенциала по температуре равны нулю, т. е. [c.146]


    Таким образом, для идеального газа при постоянной температуре мольный изобарный потенциал, или химический потенциал, полностью определяется давлением. Если газ (пар) находится в равновесии с жидкостью, то химический потенциал пара равен химическому потенциалу жидкости. Поэтому давление насыщенного пара будет характеризовать свойства жидкости, а именно стремление вещества покинуть жидкую фазу. Если поместить сосуды с двумя жидкостями (чистой и ее раствором) в общую камеру, то поскольку давление пара над чистой кидкостьго всегда больше, чем над раствором, то вещество будет переходить из чистой жидкости в раствор. [c.66]

    Условия равновесия между двумя фазами в двухкомпонентной системе в общем виде описываются уравнением состояния Ван-дер-Ваальса (1-130). Для расчета свойств равновесных фаз с помощью этого уравнения необходимо знать зависимость изобарного потенциала от параметров состояния. Такая зависимость может быть установлена априори только для системы, состоящей из идеальных фаз. Напомним, что под идеальной фазой понимается такая смесь, в которой молекулы различных компонентов специфически не взаимодействуют между собой и, следовательно, ведут себя в смеси так же, как в соответствующих чистых веществах. Для таких систем получается уравнение состояния (1-201), которое связывает в явном виде составы равновесных фаз, температуру и давление. Это позволяет рассчитывать фазовое равновесие в идеальных системах, зная только свойства чистых компонентов. [c.108]

    Пусть О представляет общее значение какого-либо экстенсивного свойства, например объема, энтальпии, изобарного потенциала, гомогенной системы или раствора, состоящего из N компонентов. Для того чтобы сосредоточить внимание целиком на изменении О как на результате изменений количеств различных компонентов раствора, примем, что другие незавЦсимые переменные, например давление и температура, остаются постоянными. Таким образом, мы можем написать [c.154]

    Из рассмотрения парциальных мольных величин очевидно, что химические потенциалы являются интенсивными свойствами, аналогично давлению и температуре, причем зависят от состава раствора, но не зависят от общей массы его. Химический потенциал любого компонента фазы определяется изменением общего изобарного потенциала этой фазы (который отличается от его мольного значения) с изменением количества этого компонента при постоянных давлении, температуре и количестве всех остальных компонентов фазы. Он также определяется изменением общей энтальпии фазы при изменении количества данного компонента, когда поддерживаются постоянными энтродия, давление и количество остальных компонентов и т. д. [c.159]

    Уже простая смесь ионнопостроенных солей с общим ионом содержит две частицы, будь то катион или анион, обладающие различной силовой характеристикой (плотность заряда, радиус иона). Это приводит к усилению связи между ионом с большей плотностью заряда и общим ионом, в результате чего снижается подвижность этого иона, наблюдается некоторое увеличение объема и снижается поверхностное натяжение смеси. Появление в такой смеси еще одного постороннего иона усиливает этот эффект, т. е. расплав типа А, ВЦХ, Y будет обладать более выраженным ионным взаимодействием сравнительно со смесью А, ВЦХ или АЦХ, Y, так как появляется возможность парного взаимодействия между про-тивоионами с близкими энергетическими характеристиками. К примеру, в системе Na l — K l эквивалентная электропроводность описывается простейшим уравнением [6], частичная замена хлорида натрия на бромид натрия, кстати, имеющий близкую электропроводность, приводит к появлению минимума на изотерме свойства, а отклонение опытного значения эквивалентной электропроводности от рассчитанной для простейшего случая (эквимолярный состав при 800° С) достигает — 5,9% [4]. Для системы Na, KII 1, I расчет изобарного потенциала реакции обмена при 800°С дает величину 3,0 ккал. Оказывается, что обменная реакция находит отражение на изотермах ряда физико-химических свойств для пары Nal — K l (нестабильной) отклонение мольного объема от [c.71]


Смотреть страницы где упоминается термин Общие свойства изобарного потенциала: [c.267]   
Смотреть главы в:

Основы физико-химического анализа -> Общие свойства изобарного потенциала




ПОИСК





Смотрите так же термины и статьи:

Потенциал изобарный

Потенциал изобарный Изобарный потенциал



© 2025 chem21.info Реклама на сайте