Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Системы хлористый алюминий — ароматический углеводород

    Соответствующие данные о комплексах ароматических углеводородов с хлористым водородом и системой хлористый водород—хлористый алюминий суммированы в табл. 2. Данные табл. 2 ясно показывают, что эти две группы комплексов сильно различаются по своим свойствам. Действительно, различия настолько резкие, что в высшей степени невероятно, чтобы обе эти группы комплексов могли обладать одинаковой структурой. Поэтому, вероятно, эти комплексы представляют собой два различных класса соединений с совершенно различной структурой, которые разделены значительным потенциальным энергетическим барьером. [c.400]


    Системы хлористый алюминий — ароматический углеводород [c.372]

    Опубликованы две интересные статьи [182, 183] о фазовом состоянии системы хлористый алюминий — хлористый водород — толуол и аналогичных систем, содержащих мезитилен. Результаты этих исследований свидетельствуют об образовании многочисленных тройных соединений, содержащих хлористый алюминий, хлористый водород и ароматический углеводород. Для систем, содержащих мезитилен, установить число и природу тройных соединений, образующихся в гомогенной области, оказалось невозможным. Однако детальное изучение этих работ показывает, что исследователям удалось в значительной степени выяснить характер образующихся комплексов. [c.374]

    Изучение взаимодействия ароматических углеводородов с хлористым водородом [43] и системой хлористый водород — хлористый алюминий [56] оказалось особенно полезным для понимания природы ароматических комплексов с электрофильными агентами. Более того, изучение поведения ароматических углеводородов с фтористым водородом [182] и системой фтористый водород — трехфтористый бор [212] дало чрезвычайно ценные данные для выяснения влияния структуры ароматических компонентов на их способность к образованию комплексов. Следовательно, желательно использовать результаты, полученные при этих исследова- [c.398]

    Комплексы ароматических углеводородов с каталитической системой НХ—МХд. Ранее уже отмечалось, что хлористый алюминий и хлористый водород реагируют с толуолом при низкой температуре с образованием двух комплексов СНд—GgH AlGir и СНд— eH Al2G17 следует отметить, что экспериментально показано существование этих двух веществ в растворе или в скидкой фазе. Следовательно, несомненно, что они не являются просто веществами с кристаллической решеткой, которые существуют только в твердой фазе. Предполагается, что они представляют собой о-комплексы (XXII). [c.432]

    Попытаемся разобраться, чем обусловлены столь сильные различия в устойчивости отдельных изомеров. Прежде всего необходимо отметить, что изменение взаимного расположения заместителей в орго-алкилиро-ванных кетонах, как и изомерные превращения гомологов ароматических углеводородов (см. главу I), происходит, видимо, в результате присоединения протона к атому углерода, связанному с мигрирующим заместителем. Донором протонов при этом является хлористый водород (в сочетании с кислотой Льюиса), образующийся в результате частичного разложения кетонов при их взаимодействии с хлористым алюминием в условиях изомеризации. Непрерывное выделение хлористого водорода в процессе реакции не позволяет проверить возможность изомеризации гомологов ацетофенона в его отсутствие. Однако на примере более устойчивого к разложению 2-пропионил-3,5-диметилфенола было показано, что удаление из системы хлористого водорода полностью подавляет об-> разование 2-пропионил-4,5-диметилфенола [27]. [c.83]


    В. Н. М е н ш у т к и н. О системах, образованных хлористым и бромистым алюминием с ароматическими углеводородами. ЖРХО, 1909,41, 319 и 1089 О некоторых молекулярных соединениях хлористого и бромистого алюминия. ЖРХО, [c.167]

    Электропроводные окрашенные растворы, образующиеся при низкой температуре в системе ароматический углеводород — хлористый водород— хлористый алюминий, также содержат карбониевые соли галоид-алюминиевых кислот. Так, при —80°С хлористый алюминий при пропускании НС1 растворяется в толуоле при этом образуется зеленый раствор, содержащий карбкатионы  [c.533]

    Д п-альпое изучение бензоилированпя беизола проведено Оливером [244]. Исследовались следующие реакции хлористый бензоил и хлористый алюминий с бензолом в качестве растворителя бромистый бензоил и бромистый алюминий с бензолом в качестве растворителя реакция бромистого бензоила и бромистого алюминия с бензолом в сероуглероде в качестве растворителя. В тех случаях, когда ароматический углеподород присутствует в качестве растворителя, кинетика реакции следует первому порядку и константы скорости примерно пропорциональны концентрации катализатора, если последний взят без избытка [ВС0С1] >-[А1Хд]. При избытке катализатора константы скорости быстро возрастут. Последняя система показывает, что в этом случае реакция является реакцией первого порядка и по ароматическому углеводороду, и по хлориду, и катализатору. [c.454]

    Различные варианты производства этилбензола имеют отличительные особенности, но в основе этих процессов лежат общие принципы, В системе неизменно присутствуют три фазы — газообразный этилен, жидкие ароматические углеводороды и жидкий катализаторный комплекс. Реакция протекает в катализаторном комплексе, и между ним и органической фазой устанавливается равновесие. Затем жидкий продукт охлаждают и разделяют на два слоя. Нижний слой— катализаторный комплекс — возвращают в систему. Хлористый алюминий теряется из системы двумя путями—за счет растворения в органическом слое и при выгрузке части отработанного комплекса для его замены свежим. Ката51и-заторный комплекс отдельно подвергают гидролизу, чтобы получить водный раствор хлористого алюминия, отводимый с установ- [c.270]

    Образование подобных ионизированных комплексов известно также для систем, состоящих из ароматического углеводорода, галогенида алюминия и галоидоводорода. Нерастворимый в толуоле хлористый алюминий в присутствии избытка хлористого водорода при —80° переходит в раствор, приобретающий интенсивную зеленую окраску [278]. По степени уменьшения давления в системе можно заключить, что при этом на каждый 1 моль хлористого алюминия связывается 1 моль хлористого водорода. Полагают, что растворение хлористого алюминия связано с образованием ионизированного комплекса [СНз Се Hel Al li"-При —45,4° переход хлористого алюминия в раствор сопровождается поглощением 0,5 моля хлористого водорода. В этом случае раствор окрашивается в желтый цвет и содержит,видимо, комплекс [СН Се Нб] А12 С1Г-Легкая растворимость хлористого алюминия в растворах подобных комплексов позволяет предполагать существование соединений типа [СНзСбНб]+. А1 С1зп-ц с п>2. [c.40]

    Обобщая этот вывод и распространяя его на другие случаи превращения непредельных углеводородов под влиянием хлористого алюминия, мы можем теперь следующим образом охарактеризовать всю совокупность протекающих при этом химических реакций при взаимодействии непредельных углеводородов с хлористым алюминием, в первую очередь, с большей или меньшей легкостью, ак это будет показано в Экспериментальной части, происходит полимеризация исходной системы с образованием ди-, три-, тетрамеров и вообще полимеров исходного углеводорода. Эти полимеры претерпевают далее сопряженные превращения двоякого рода часть полимеров подвергается дегидрополимеризации с образованием либо высоконепредельных полимеров, концентрирующихся в тяжелом слое комплексного соединения, либо ароматических углеводородов другая часть непредельных полимеров за счет освобождающегося в процессе дегидрополимеризации водорода претерпевает гидрирование с образованием гидрополимеров предельного характера. Если присоединить сюда рассмотренные выше процессы частичной деструкции под влиянием хлористого алюминия, точнее— процессы деструктивных полимеризации, гидро- и дегидрополимеризации, в которых могут принимать участие, очевидно, не только исходный непредельный углеводород, но и продукты только что рассмотренных его превращений, т. е. его полимеры, гидро- и дегидрополимеры, то, по-видимому, важнейшие превращения [c.234]

    Все это и обусловило большой интерес ученых к цеолитпым системам. В результате интенсивных исследований, проведенных во многих странах, в первую очередь в США и СССР, катализ цеолитами стал одной из важнейших областей гетерогенного катализа, а цеолитсодержащие катализаторы приобрели большое практическое значение. В настоящее время они широко применяются в крупнотоннажных промышленных процессах каталитического крекинга, гидрокрекинга, изомеризации н-парафи-нов вместо ранее применявшихся аморфных алюмосиликатных и окиснометаллических катализаторов. Показана перспективность их применения во многих процессах (в алкилировании изопарафинов и ароматических соединений олефинами, в конверсии углеводородов с водяным паром в синтез-газ, изомеризации ароматических углеводородов Сд, олигомеризации олефинов и др.), в том числе протекающих в присутствии хлористого алюминия, серной кислоты и других катализаторов. Замена последних позволит существенно улучшить технологию ряда процессов, повысить культуру производств, оздоровить окружающую среду. [c.4]


    Во многих системах Фриделя — Крафтса, например содержащих бромиды алюминия или галлия, алкилирование ароматических соединений происходит в гомогенном растворе как в неосновных, так и в основных растворителях. Однако в системах, содержащих трехфтористый бор и фтористый водород, а также хлористый алюминий и хлористый водород, если в качестве растворителей использовать углеводороды или другие неосновные соединения, образуются два жидких слоя. Один из этих слоев является кислотно-солевым и содержит все взятое количество бора или алюминия, именно в этом слое-происходит реакция. Второй слой — органический, он содержит органические реагенты и продукты реакции, если они не слишком сильно основны. Способность арена переходить в кислотно-солевой слой зависит от основности арена, а также от температуры, так как при повышении температуры умень-пшется солеподобная сольватация арена, и последний возвращается в углеводородный слой (частное сообщение Д. Пирсона). [c.300]

    Важные исследования в области изомеризации парафинов были выполнены А. Д. Петровым и его сотрудниками. Диспропорционирование метильных групп в системе ксилолы—бензол в присутствии хлористого алюминия—изучал П. И. Шуйкин. Изомеризацию радикалов, входящих в состав как ароматических, так и циклических углеводородов, изучал еще в прошлом веке М. И. Коновалов. Следует также упомянуть работы И. П. Цукерваника в области алкилирования ароматических углеводородов спиртами в присутствии хлористого алюминия и ряд других исследований, работы по изомеризации парафиновых углеводородов А. П. Сиверцева, Р. Д. Оболенцева, многочисленные исследования А. Ф. Добрянского по крекингу нефтяных ( ракций и индивидуальных углеводородов с хлористым алюминием и по действию хлористого алюминия на ряд органических соединений, в том числе на сложные эфиры многоатомных спиртов, различные нерег] )уипировки под действием хлористого алюминия, изученные Д. П. Курсановым, Г. И. Гершензоном, и много других работ. Дан е перечислит), в кратком предисловии важнейшие работы советских химиков в этой области пе представляется [c.7]


Смотреть страницы где упоминается термин Системы хлористый алюминий — ароматический углеводород: [c.41]    [c.478]    [c.609]    [c.451]    [c.349]    [c.452]    [c.461]   
Смотреть главы в:

Новейшие достижения нефтехимии и нефтепереработки том 7-8 -> Системы хлористый алюминий — ароматический углеводород




ПОИСК





Смотрите так же термины и статьи:

Ароматические системы



© 2025 chem21.info Реклама на сайте