Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алюминий строение и связь

    Алюминий — основной представитель металлов главной подгруппы III группы периодической системы химических элементов Д. И. Менделеева. Атомный номер 13, относительная атомная масса 26,98154. У алюминия единственный устойчивый изотоп А1. Свойства аналогов алюминия — галлия, индия и таллия — во многом напоминают свойства алюминия. Этому причина — одинаковое строение внешнего электронного слоя элементов — s p, вследствие которого все они проявляют степень окисления +3. Другие степени окисления нехарактерны, за исключением соединений одновалентного таллия, по свойствам близким к соединениям элементов I группы. В связи с этим будут рассмотрены свойства только одного элемента — алюминия и его соединений. [c.150]


    Если сравнить химический состав Земли с составом Вселенной, то, казалось бы, между ними не должно быть существенных различий, за исключением, пожалуй, водорода, который легко уходит из атмосферы в межпланетное пространство. К сожалению, судить о составе Земли можно лишь по составам атмосферы, гидросферы и земной коры, изученной в глубину не более чем на 20 км. Главная химическая особенность этих трех сфер — необычайно высокое содержание кислорода, что объясняется уже не строением ядер его атомов, а его химическими свойствами. Атомы кислорода способны образовывать прочные химические связи с атомами многих элементов, в том числе кремния и алюминия. В процессе образования земной коры эти элементы накапливались в ней благодаря легкоплавкости их соединений со щелочами. В итоге на поверхности нашей планеты выкристаллизовалась твердая кремнекислородная оболочка. Кислород, не считая воды, входит в состав 1364 минералов. В атмосфере кислород появился около 1,8 млрд. лет назад в результате действия на минералы микроорганизмов. В настоящее время выделение кислорода растениями за счет фотосинтеза возмещает его убыль в атмосфере в ходе процессов окисления, горения, гниения, дыхания. По числу известных природных соединении (432) второе место занимает кремний. Далее по распространенности атомов в земной коре следуют алюминий, натрий, железо, кальций, магний и калий  [c.201]

    Различные типы адсорбентов проявляют неодинаковую селективность по отношению к различным соединениям. Трудно установить прямую связь между адсорбируемостью вещества и его химическим строением, а также между химическим строением адсорбента и его адсорбционной емкостью. Поэтому общепринятым считается деление адсорбентов на две основные группы полярные (гидрофильные) — силикагель, оксид алюминия, искусственные и природные силикаты неполярные (гидрофобные) — активированный уголь, кизельгур, диатомит. На полярном адсорбенте энергия адсорбции возрастает с увеличением размеров молекул адсорбированного вещества, причем энергия адсорбции тем выше, чем больше полярность адсорбированного вещества. Неполярные адсорбенты не проявляют селективности по отношению к полярным молекулам. [c.54]

    Органические сульфиды образуют стабильные комплексные соединения с галогенами, органическими галоидпроизводными, галогенидами - тяжелых металлов и некоторыми другими веществами. Природа сил взаимодействия при комплексообразовании сульфидов с этими соединениями изучена недостаточно. Полагают [47], что донорно-акцепторная связь осуществляется за счет передачи неподеленной пары электронов атома серы на свободную валентную орбиталь атома металла (ртути, алюминия, олова, титана и др.). На структуру и свойства комплексных соединений влияют условия их образования, химическое строение сульфида и соединения, вступающего с ним в реакцию [48]. При взаимодействии сульфидов с бромом или иодом иногда образуются кристаллические комплексные соединения, а при взаимодействии с йодистыми алкилами и галогенированными жирными кислотами — кристаллические сульфониевые соли. Наиболее стабильны комплексные соединения сульфидов с галогенидами ртути, ацетатом ртути, солями платины, олова, титана, палладия, алюминия. В зависимости от химического строения и условий комплексообразования сульфиды могут присоединять различное число молекул одного и того же комплексообразователя (акцептора). [c.118]


    Практически все известные для этиленовых соединений реакции электрофильного присоединения можно провести и с ацетиленовыми углеводородами и их производными. Однако вследствие большей электроотрицательности 5 г7-гибридных атомов углерода ацетилена я-электроны тройной связи более жестко связаны с ядрами, чем в этилене. На это, в частности, указывают значения потенциалов ионизации двойной (10,50 эВ) и тройной (11,40 эВ) связей. Электро-нодонорные свойства тройной связи ниже, чем у двойной, поэтому ацетиленовые соединения вступают в реакции с электрофилами примерно в 10 раз труднее, чем близкие нм по строению этиленовые. Для ускорения этих реакций рекомендуется применение катализаторов. Наиболее часто используются апротонные кислоты (галоге-ниды алюминия, бора, меди н ртути)  [c.118]

    Органические соединения остальных переходных элементов. Переходные элементы остальных (кроме ПБ) побочных подгрупп периодической системы в проявляемых их атомами степенях окисления имеют незавершенные электронные -подоболочки предвнешнего уровня. Поэтому, наряду с образованием ординарной полярной ковалентной связи с углеродом за счет вклада внешних з- и р-орбиталей, они способны образовывать совершенно иные по строению и свойствам соединения за счет участия ( -орбиталей. В таких соединениях металл можно так же, как и соединения магния, бора, алюминия (см. выше), считать координационно ненасыщенным. Данная ненасыщенность металла теперь определяется наличием вакантных орбиталей не только на внешнем, но и на втором снаружи энергетических уровнях его атома. Природа вакантных орбиталей атома переходного элемента также отличается от орбиталей в- и р-элементов. Симметрия и пространственная протяженность -орбиталей переходного элемента позволяет им эффективно перекрываться с орбиталями большего числа атомов и удаленных на большее расстояние от металла, чем это возможно для з-или р-элемента. Поэтому часто органические соединения переходных металлов являются комплексными. С примерами таких комплексных элементоорганических соединений мы уже встречались ферроцен, дибензолхром, хелаты и др. (разд. 13.4). [c.599]

    Хлористый алюминий катализирует самые разнообразные реакции, и его каталитическое действие обычно объясняют образованием либо карбониевых ионов, либо комплексных соединений с участием реагирующих веществ. О составе и строении таких комплексов имеется обширная литература [360, 322]. Коршак и Лебедев [361] объясняют каталитический эффект хлористого алюмииия образованием тройных комплексов (а) между углеводородом, галоидопроизводным и галидом алюминия . Перемещение связей в этих комплексах приводит к распаду последних и образованию продуктов реакции [c.551]

    Еще будучи студентом третьего курса, В. С. Гутыри под руководством доцента Е. Познера участвовал в научно-исследовательских работах лаборатории количественного анализа АКИМ им. М. А. Азизбекова. Первая его публикация посвящена применению газообразного аммиака для количественного определения алюминия (1932 г.). Позднее он занимался изучением строения органических соединений, что нашло отражение в ряде статей, посвященных вопросам пространственных форм углеродного тетраэдра, строения молекулы бензола, структуры поливалентных связей, зависимости структурных констант молекулярной рефракции и парахора от характера связей. [c.4]

    Окись алюминия является стабильным катализатором — в отличие от алюмосиликата и фторированной окиси алюминия она слабо катализирует реакции крекинга и полимеризации и не дезактивируется за счет этих процессов. Каталитическая активность окиси алюминия связана с ее строением. Используя различную гидроокись алюминия, ее дегидратацией при разных температурах получают семь модификаций окиси алюминия (Х-, х-, у-, 6-, т)-, 6- и а) [14]  [c.146]

    Полимерными соединениями, или полимерами, называют вещества, молекулы которых состоят из многочисленных элементарных звеньев одинаковой структуры. Элементарные структурные звенья соединены между собой ковалентными связями в длинные цепи линейного или разветвленного строения или же образуют эластичные или жесткие пространственные решетки. Своеобразно построенные, гигантские по размерам молекулы полимерных соединений обычно называют макромолекулами. Основная цепь макромолекул органических полимеров состоит из атомов углерода, иногда с чередованием атомов кислорода, серы, азота, фосфора. В макромолекуляр-ную цепь могут быть введены атомы кремния, титана, алюминия и других элементов, не содержащихся в природных органических соединениях. [c.9]

    Из сказанного выше вытекает, что кристаллическое состояние является важным и интересным для изучения, но все-таки одним из частных состояний твердого вещества. Не менее важно и интересно не периодическое, но регулярное состояние вещества. В подобном состоянии находятся высокомолекулярные, в частности, белковые вещества. При таком взгляде на твердое вещество кристаллическая решетка перестает быть основой для его изучения. И все наше внимание сосредоточивается на остове твердого вещества, тем более, что, как отмечалось выше, в отличие от абстрактной кристаллической решетки остов — реальный объект — непрерывная цепь, сеть или каркас, построенные из атомов, соединенных атомными связями. Остов может быть выделен в свободном состоянии, если в него входит достаточное количество вещества, равное, как, например, показывает опыт выделения кремнекислородных и углеродных остовов, по крайней мере 40% массы исходного твердого соединения. Остов — это носитель дальнего порядка, задаваемого межатомным взаимодействием. Отсюда следует, что изучение химического строения, конструирование и сборка атомных моделей вещества — старые надежные методы химического исследования — являются главными методами изучения твердого вещества. Вместе с тем настало время для конструирования и химической сборки твердых веществ и притом не только сравнительно простых, но и самых сложных веществ, в том числе различных материалов. При этом, конечно, следует руководствоваться не только химическими соображениями. Необходимо принимать также в расчет выводы теории устойчивости и прочности материала. Эта теория целиком основывается на учете межатомного и межмолекулярного взаимодействия и химического строения. Например, жесткость материала характеризуется модулем Юнга Е. При этом исходят из того, что, нагружая твердое вещество, мы действуем непосредственно на его межатомные связи. Отсюда ясно, что различие величины Е для разных веществ обусловлено различием жесткости самих химических связей. Модуль Юнга равен для алюминия всего 0,8-10 кГ/мм , для сапфира—4-10 а для алмаза 12-Ю кГ/мм . Именно исключительная прочность и жесткость связей С — С в алмазе делает его самым твердым и жестким из твердых веществ. [c.243]


    Одинаковое строение внешней электронной оболочки атома бора и алюминия обусловливает сходство в свойствах этих элементов. Так, для алюминия, как и для бора, характерна только степень окисления +3. Однако при переходе от бора к алюминию сильно возрастает радиус атома (от 91 до 143 пм) и, кроме того, появляется еще один промежуточный восьмиэлектронный слой, экранирующий ядро. Все это приводит к ослаблению связи внешних электронов с ядром и к уменьшению энергии ионизации атома (см. табл. 15.2). Поэтому у алюминия металлические свойства выражены гораздо сильнее, чем у бора. Тем не менее химические связи, образуемые алюминием с другими элементами, имеют в основном ковалентный характер. [c.400]

    Разнообразны и сложны а т о м н о - м о л е к у л я р н ы е соединения, в которых структурные единицы связаны межмолекулярными и межатомными связями. К ним относятся обезвоживаемые гидроксиды алюминия, цинка, титана и других d-элементов (см. 1.11). Образующаяся при этом твердая фаза в зависимости от условий дегидратации имеет переменный состав, включает в себя ряды твердых веществ, близких по составу, строению и массе. В пределах таких рядов близких химических соединений, мало отличающихся по составу и стехиометрии, кристаллическая структура может сохраняться — образуется область гомогенности (см. 1.7), имеет место перерыв в непрерывности . [c.137]

    Кристаллическую решетку способны достраивать не только ионы, входящие в состав решетки, но и изоморфные с ними. При этом прочную связь с поверхностью кристалла могут образовывать не только ионы, входящие в кристаллическую решетку, но и атомные группы, близкие по строению к атомным группам, находящимся на поверхности кристалла. Так, гидроксиды алюминия и железа прочно связывают группы, содержащие кислород. [c.272]

    Каждый из указанных классов подразделяется на отдельные группы в зависимости от строения главной цепи, наличия в ней кратных связей, количества и природы заместителей и боковых цепей. Гетероцепные соединения классифицируют, кроме того, с учетом природы и количества гетероатомов, а элементорганические соединения в зависимости от сочетания углеводородных звеньев —с атомами кремния, титана, алюминия и др. [c.167]

    Бор и алюминий — элементы III группы периодической системы. Однако строение их атомов определяет значительные различия в химических свойствах этих элементов. Радиус атома бора (0,91 А) меньше радиуса атома алюминия (1,43 А). Ионизационные потенциалы бора больше соответствующих потенциалов алюминия следовательно, способность отдавать электроны у бора меньше, чем у алюминия. Еще в большей степени отличаются величины радиусов ионов этих элементов = 0,20 А, = 0,57 А. Поэтому величина напряженности ионного поля (частное от деления ааряда иона на квадрат его радиуса) у бора значительна больше. Вследствие этого связи Э — О у бора и алюминия различные. Связи В — О имеют малую степень ионности и обладают основнымн признаками ковалентных связей. Бор [c.138]

    Нельзя писать структурную формулу МаС1 как Ма—С1. В кристалле поваренной соли молекулы отсутствуют. В узлах кристаллической решетки соли расположены ионы N3+ и С1 , причем каждый ион натрия окружен шестью ионами хлора, и наоборот. В этом случае формула Ыа—С1 не отражает действительного расположения ионов в молекуле, а потому она не является структурной формулой. То же можно сказать и о всех соединениях, которые имеют ионные кристаллические решетки (окислы металлов, основания, соли). Так, формула 0 = А1— —О—А1 = 0 также не является структурной это ионное соединение. В кристаллической решетке АЬОз тоже отсутствуют молекулы. Написанная формула есть лишь графическое изображение, показывающее, что атомы алюминия не связаны между собой, они связаны с атомами кислорода. Не соединены между собой и атомы кислорода, они соединены с атомами алюминия. Формула указывает валентность элементов, но не указывает порядка соединения атомов друг с другом в веществе (это отражает структурная формула, она очень сложная). Структурными формулами можно выражать строение соединений, имеющих ковалентную связь. К ним относятся большинство органических соединений, многие кислоты и некоторые окислы неметаллов. [c.50]

    Строение органических соединений алюминия. В связи с открытием димерности триметилалюминия возник интересный вопрос, касающийся валентности. [c.614]

    Гидрид алюминия (А1Нз) — белый порощок, разлагающийся при температуре выше 105°С с выделением водорода. Подобно гидридам бора А1Нз — соединение с дефицитом электронов. Предполагается, что он имеет сетчатое строение. Атомы алюминия находятся в октаэдрическом окружении атомов водорода н каждая пара соседних атомов алюминия связана двумя трехцентровыми двухэлектронными связями через атомы водорода сверху и снизу от плоскости сетки из атомов алюминия. Фрагмент структуры А1Н, показан на рис. 192. [c.460]

    Согласно Азингеру при дегидратации высших нормальных первичных спиртов над окисью алюминия при 360—400° получается смесь всех теоретически возможных олефинов нормального строения [5]. Разложение над активной окисью алюминия легко протекает уже при 250°, но 15—20 % спирта остается непрореагировавшим. Даже при этой температуре в значительной мере происходит перемещение двойной связи. Так, из к-доде-цилового спирта получаются главным 1- и 2-додецены, в несколько меньших количествах З-додецсн и примеси 4-, 5- и 6-додсценов. П1)и применении катализаторов слегка кислого характера, например основного сульфата алюминия или окиси алюминия со следами хлористоводородной или кремневой кислот, дегидратация приводит к образованию еще более сложной смеси олефинов. [c.413]

    Описанные ранее процессы характеризуются довольно высокими температурами. Выход углеводородов сильно разветвленного строения за один проход получается сравнительно невысокий, в связи с чем приходится из продуктов реакции выделять углеводороды нормального строения и возвращать их снова на реакцию. Разработанный фирмой Стандарт ойл процесс (процесс изомейт) лишен указанного недостатка, поскольку он проводится при низкой температуре — от 93 до 120°, которая способствует получению изомеров сильно разветвленного строения. Катализатором является хлористый алюминий, промотированный безводным хлористым водородом. Сырьем для процесса могут служить пентан-гексановые или узкие гексановые фракции. Указанным способом может перерабатываться также и бутан-пентановая фракция. Процесс проводится в присутствии водорода. [c.145]

    ИК-спектры многих окисей биссульфидов и смесей продуктов окисления имеют широкую полосу в области 3200—3600 см , аналогичную полосе в спектрах поглощения растворов пиридина с водой [14]. Удалить воду из ассоциатов окисей вторичных, третичных биссульфидов и окисей биссульфидов из природных меркаптанов довольно трудно, так каК при температуре выше 50—60° происходит разложение продуктов. При перекристаллизации продуктов окисления, отгонке растворителей и хроматографировании на окиси алюминия наблюдается образование примесей с ненасыщенной связью. Появление подобных соединений можно объяснить, вероятнее всего, протеканием реакции Пуммерера [3]. Нам удалось выделить хроматографированием дисульфон ацетилтиоэфира (LIV) предполагаемого строения из продуктов окисления биссульфидов из нефтяных меркаптанов перекисью водорода в уксусной кислоте. [c.65]

    Наиболее простым и надежным методом обессеривания средних-и тяжелых дистиллятных нефтепродуктов является каталитическое гидрирование при сравнительно мягких условиях [105 . Процессы эти получили название гидроочнстки или гидрообессеривания. В качестве катализаторов используются сульфиды вольфрама или молибдена, отложенные на активной окиси алюминия, а также катализатор риформинга (окись молибдена и окись кобальта, отложенные на активной окиси алюминия). Из экспериментальных данных, посвященных изучению термических и термокаталитических превращений индивидуальных сераорганических соединений [9, И, 02, 87 1, видно, что прочность связен в сильной иепени зависит от химического строения сераорганических соединении. Зависимость ирочностн связей от строения сераорганических соединений наиболее систематически изучена в работах Тиц-Скворцовой с сотрудниками [88—90. 109, 112]. [c.372]

    Смолы — выделяют адсорбцией фуллеровой землей, активированной окисью алюминия или силикагелем после удаления из битума части, нерастворимой в петролейном эфире. Извлекают смолы из адсорбента экстракцией четыреххлористым углеродом, бензолом, или, лучше всего, смесью бензола г небольшим количеством спирта. Это аморфные вещества от красноватого до темно-коричневого цвета, растворимые в петролейном эфире и в растворителях для асфальтенов. Свое название эти продукты получили, по-видимому, в связи с тем, что при испарении растворителя они, подобно природным и синтетическим смолам, образуют сплошную пленку. Химическое строение смол подобно отроению асфальтенов. [c.7]

    Рассмотрим пример. Формулой А1С1з обозначают кристаллический хлорид алюминия, его молекулу в газовой фазе, его раствор в воде или других растворителях. Строение же А1С1з в этих условиях весьма различно и отнюдь не следует, что алюминий, атомы которого имеют три валентных электрона, образует три двухцентровые двухэлектронные связи  [c.82]

    Большие успехи в области применения регулируемой анионной полимеризации достигнуты за последние годы и в связи с открытием комплексных катализаторов Циглера—Натта . Под влиянием этих катализаторов были получены кристаллические полимеры этилек а, пропилена и других а-олефипов, обладающие регулярным строением с определенным расположением заместителей в пространстве (изотактические и синдиотактические полимеры, стр. 57 ел.). По типу полимеров, получаемых под воздействием катализаторов Циглера—Натта, последние называют с т е р е о-специфическими к а т а л и з а т о р а. м и. Стерео-специфические катализаторы состоят из смеси металлорганических соединений металлов П и 1Н гру[И1 и галогенидов металлов [ V и VI групп, включая торий и уран. Наибол ,шее распространение приобрел катализатор, получаемый смешением триалкил-алюминия и х. юридов титана при разл гчном молярном соотно-пн нии компонентов. [c.146]

    Поверхность твердых тел жесткая, имеет кристаллическое строение (металлы - сталь, бронза, медь, алюминий и др.). На поверхности твердых тел и жидкостей (нефтепродукты, вода) находятся молекулы с нескомпенси-рованными связями. Поверхность деталей двигателей и механизмов всегда неоднородна и не может быть идеально гладкой. Полированные металлические поверхности состоят из нескольких тонких слоев оксидного, псевдо-аморфного (с электрическим зарядом) и зон деформации основного металла. На твердой поверхности имеются микроскопические участки с химически активными группами атомов основного металла и примесных металлов (активные центры). [c.45]

    Роль химической природы растворителя в адсорбционном процессе некоторые исследователи связывают с особенностями химического строения цеолита СаА. Стенки полостей цеолита и его окна образованы атомами кислорода, а атомы кремния и алюминия находятся в глубине алюмоснликатных скелетов за ионами кислорода. Отрицательный заряд алюмосиликатного аниона рассредоточен на внутренних связях 0-А1, а компенсирующий положительный заряд сосредоточен в обменных катионах, находящихся в полостях цеолитов в непосредственной близости к стенкам и окнам, что приводит к образованию в полостях цеолитов областей с резко выраженными не-однородн1лми электростатическими полями. Это и определяет природу взаимодействия цеолита с молекулами разной электронной структуры. [c.288]

    Вероятно, таким же образом можно представить и строение молекул в проявляющих коллоидные свойства растворах гидроокиси железа, гидроокиси алюминия и др. Однако известно, что подобные растворы при стоянии или при добавлении электролитов могут приобретать типичные свойства обычных коллоидных систем. Для жидкого стекла это явление можно объяснить наличием у молекул ортокремневой кислоты гидроксильных групп, благодаря чему при добавлении, например, кислоты происходит сшивание молекул поперечными химическими связями. Если растворы достаточно разбавлены, то вследствие сшивания участков одной и той же гибкой макромолекулы могут образоваться отдельные мицеллы, причем роль стабилизатора играет сама кремневая кислота. [c.422]

    В последние десятилетия широкое распространение получила анионно-координационная полимеризация в присутствии комплексных катализаторов Циглера — Натта. Этот метод используется в промышленном синтезе стереорегулярных полимеров. Кроме того, этот метод является единственным для полимеризации а-олефинов (пропилена, бутена-1 и др.). В состав катализаторов Циглера — Натта входят металлоорганические соединения I—П1 групп и хлориды IV—VH групп с переходной валентностью. Наиболее часто используются металлоорганические соединения алюминия и хлориды титана. Так как алкильные производные алюминия обладают электроноакцепторными свойствами (алюминий на четыре валентные орбиты имеет три электрона), а металлы переходной валентности являются электронодонорами (имея на -орбитах неспаренный электрон), они легко образуют координационные связи. Такие комплексные катализаторы нерастворимы, и их строение точно не установлено, но па основании данных, полученных при изучении строения растворимых комплексных катализаторов, предполагается, что они представляют собой биметаллический комплекс с координационными связями. При изучении структуры растворимого комплексного катализатора, полученного из дициклопентадиенилхлорида титана и диэтилалюмииийхлорида методом рептгеноструктурного анализа, было установлено, что он имеет следующее строение  [c.89]

    Мицеллярное строение наиболее распространенных известковоглинистых шламов можно представить следующим образом. В пространственной структуре существуют центры (узлы)—комплексные образования с ядром из карбоната кальция размером 5— 20 мкм. На поверхности этих частиц, заряженных обычно отрицательно, адсорбируются из водного солевого раствора молекулы воды и катионов металлов. Наряду с ними поверхностью частиц могут притягиваться положительно заряженные мелкие частицы гидроксидов железа, алюминия и других веществ. Этот слой является первичным слоем противоионов на ядре (рис. 8.1). Вокруг такой частицы располагаются более мелкие кристаллы глинистых компонентов (размером менее 0,5 мкм), представляющие собой, в свою очередь, сложные образования. Благодаря сильно развитой поверхности частицы глины обладают большим запасом поверхностной энергии. Ненасыщенные связи поверхностных узлов решетки способны прочно удерживать комплексы силикагеля, гиббсита, гидроксида железа. [c.274]

    Известно, что гомолигандные аквакатионы алюминия существуют в заметных количествах при рН<4, а гомолигандные гидроксоанионы алюминия —при рН>10. Объясните эти факты и изобразите геометрическое строение указанных ионов, используя метод валентных связей. Какие другие частицы, содержащие алюминий, присутствуют в водном растворе при pH 4—10  [c.77]

    Таким образом, при растворении некоторых веществ в воде они, благодаря гидратации, настолько преображаютс я (получаются новые соединения, имеющие иное строение), что получают новые свойства, какими не обладали до взаимодействия с водой. Например, хлорид алюминия AIGU— ковалентное соединение (т. мл. 193 0), тогда как раствор хлорида алюминия — сильный электролит. Причина такого превращении в том, что в растворе это соединение приобретает иной состав, а именно (. 1 (Н,0) I U. Это соединение, подобно хлориду ам, юния, имеет ионную связь. [c.73]

    Для инертных комплексных ионов в растворе некоторое время может существовать неравновесная смесь изомеров и инертные комплексы могут быть переведены в твердую фазу без изменения строения. Так, соединение [Со(МНз) 5 I ]С1 а и в кристалле, и.в растворе состоит из ионов [ o(NHg)5 lp+ и С1 . При растворении же, например, алюмокалиевых квасцов, в кристаллах которых ионы 8042"координированы алюминием, оказывается, что лишь очень малая доля ионов в растворе связана в сульфатные комплексы. По мере разбавления раствора комплексного соединения степень диссоциации лабильных комплексов увеличивается, так как лиганды из них вытесняются растворителем, инертные же комплексные ионы не изменяются. [c.50]


Смотреть страницы где упоминается термин Алюминий строение и связь: [c.417]    [c.121]    [c.231]    [c.541]    [c.88]    [c.279]    [c.317]    [c.170]    [c.402]    [c.280]    [c.251]   
Справочник по общей и неорганической химии (1997) -- [ c.42 , c.43 ]




ПОИСК





Смотрите так же термины и статьи:

Алюминий строение



© 2025 chem21.info Реклама на сайте