Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Иттрий — водород

    Отношение к другим элементарным окислителям. Скандий, иттрий и лантан при повышенной температуре соединяются с галогенами, азотом, водородом, серой с образованием галидов, нитридов, гидридов, сульфидов и др. В этих реакциях наиболее активно ведет себя лантан. [c.64]

    Отношение к кислотам. По значениям электродных потенциалов скандий, иттрий и лантан близки к щелочноземельным металлам (от —2,0 до —2,4 в). Они легко растворяются в кислотах в выделением водорода, например  [c.65]


    Иногда в литературе все соединения водорода называют гидридами. Редкоземельные элементы, к которым относятся металлы ПШ-группы, лантан с лантаноидами, иттрий и скандий, образуют как металлические гидриды общей формулы ЭН,,, так и ионные, отвечающие формуле ЭН3. [c.282]

    Другие окислители (галогены, сера, азот, водород) также взаимодействуют со скандием, иттрием и лантаном при нагревании (получа- [c.406]

    Из кислот скандий, иттрий и лантан (подобно щелочным металлам) легко вытесняют водород  [c.407]

    В институте Электрохимии Уральского отделения АН СССР [35, т. 2, с. 177-179] разработаны ТЭ с пористыми металлическими анодами, с катодами на основе смешанных оксидов и электролитом на основе диоксида циркония, стабилизированного оксидом иттрия. При температуре 850°С получена уДельная мощность до 1,5 кВт/м при работе на водороде и конвертированном природном газе. Испытаны батареи ТЭ мощностью 200 Вт и 1 кВт. [c.90]

    Изотопический обмен и возбуждение спектров уравновешенного газа разделены. Последнее дает возможность более гибко подбирать оптимальные условия анализа, обеспечивать высокую чувствительность определений. Разработаны методики определения водорода в алюминии, титане, ванадии, хроме, железе, кобальте, никеле, меди, цинке, иттрии, цирконии, ниобии, молибдене, палладии, кадмии, лантане, празеодиме, неодиме, тантале и вольфраме. Преимущество данного варианта заключается в возможной вариации температуры и времени обмена (для разных металлов и газов от 400—500° С до 2000—2100° С и от 5— 0 мин до 2—Зч), применении ваин (железных, никелевых, кобальтовых), графитовых тиглей различной формы и других необходимых в процессе анализа изменений. [c.23]

    Азот . Актиний. Алюминий Америций Аргон. . Астат. . Барий . Бериллий Берклий Бор. . . Бром. Ванадий. Висмут Водород. Вольфрам Гадолиний Галлий Гафний Гелий. Германий Гольмий. Диспрозий Европий Железо Золото Индий Йод. Иридий. Иттербий Иттрий Кадмий. . Калий. Калифорний Кальций. Кислород Кобальт Кремний. Криптон. Ксенон Кюрий Лантан Литий. . Лютеций Магний Марганец Медь. Менделевий Молибден Мышьяк. Натрий Неодим [c.437]

    Следует остановиться на интересных результатах, полученных недавно в нашей лаборатории наличие на поверхности окиси иттрия хемосорбированного в определенных условиях водорода необходимо для проявления ката- [c.180]

    С целью установления корреляций селективности с электропроводностью были определены величины удельной электропроводности обоих образцов окиси иттрия в вакууме, а также после модифицирования водой и водородом, т. е. тех образцов, на которых определялась каталитическая активность и были изучены изменения проводимости в ходе реакции. Для того чтобы при этом оценить влияние каждого из реагентов, измерялись изменения электропроводности при адсорбции воды, этилена, альдегида, водорода и спирта. Все эти вещества вызывают увеличение электропроводности п-проводящей окиси иттрия, т. е. они являются донорами электронов. Исходные температурные зависимости электропроводности" обоих образцов в. вакууме отличаются на два порядка в области каталитических температур, причем электропроводность образца 2 больше проводимости образца 1 (рис. 5). Энергии активации проводимости обоих образцов в области температур катализа одинаковы и равны 1,68 эв. [c.188]


Рис. 6. Изменение электропроводности окиси иттрия (образец 1) при адсорбции водорода Рис. 6. <a href="/info/569539">Изменение электропроводности</a> окиси иттрия (образец 1) при адсорбции водорода
    Гидриды данных металлов получают нагреванием простых веществ в атмосфере водорода. Так, для скандия и иттрия известны гидриды 8сН2 и Н2, для лантана— ГаН2 и ЬаН,. Известны и другие гидриды элементов подгруппы скандия, которые относятся к фазам внедрения. Гидриды — твердые вещества серого или черного цвета, электронроводны. При нагревании на воздухе разлагаются с образованием оксидов и водорода, например  [c.357]

Рис. 7. Температурные зависимости электропроводности окиси иттрия (образец 2) с хемосорбированным водородом, полученные при разных температурах откачки адсорбированного водорода Рис. 7. <a href="/info/1016190">Температурные зависимости электропроводности</a> окиси иттрия (образец 2) с <a href="/info/1727859">хемосорбированным водородом</a>, полученные при <a href="/info/50238">разных температурах</a> откачки адсорбированного водорода
Рис. 9. Изменение электропроводности при адсорбции кислорода на окиси иттрия (образец 2) с хемосорбированным водородом Рис. 9. <a href="/info/569539">Изменение электропроводности</a> при <a href="/info/10533">адсорбции кислорода</a> на окиси иттрия (образец 2) с хемосорбированным водородом
    Мы изучили возможность фотометрического определения иттрия в виде комплекса с ализарином 3 и аммиаком в присутствии лантана и церия. Оказалось, что мешающее влияние церия при определении иттрия можно легко устранить прибавлением перекиси водорода. Растворы комплекса иттрия в н. бутиловом спирте хорошо подчиняются закону Бугера—Ламберта—Бера. На рис. 1 представлен калибровочный график для раствора комплекса иттрия в присутствии лантана и церия. Аналогичный график получен в отсутствие лантана и церия. [c.272]

    Вышли следующие тома т. 1, 1956 (общие сведения, воздух, вода, водород, дей-теряй, тритий, гелий и инертные газы, радон) т. 3, 1957 (главная подгруппа I группы, побочная подгруппа I группы) т. 4, 1958 (бериллий, магний, кальсий, стронций, барий) т. 7, 1959 (скандий — иттрий, редкие земли) т. 10. 1956 (азот, фосфор) т. И, 1958 (мышьяк, сурьма, висмут) т. 12, 1958 (ванадий, ниобий, тантал, протактиний) т. 14, 1959 (хром, молибден, вольфрам) т. 15, 1960 (уран и трансурановые элементы) т. 16. 19(Ю (фтор, хлор, бром, марганец) т. 18, 1959 (комплексные соединения железа, кобальта. никеля) т. 19, 1958 (рутений, осмнй, родий, иридий, палладий, платина). [c.127]

    Гидроперекиси Ln(00H)(0H)2-nH20 получают из растворов солей или из гидроокисей в виде желатинообразных осадков действием щелочи и перекиси водорода. Гидроперекись церия имеет состав Се(00Н)(0Н)з-пН20 [35]. Гидроперекиси имеют различный цвет лантана, гадолиния и иттрия — белый, самария — кремовый, празеодима — светло-зеленый, церия — от оранжевого до темно-коричневого, европия — розовый. По-видимому, механизм образования гидроперекисей следующий [31]  [c.56]

    Металлический иттрий, имеющий небольшое сечение захвата тепловых нейтронов и не вступающий во взаимодействие с расплавленным ураном, является конструкционным материалом для атомных реакторов. Возможно также использование иттрия в качестве носителя водорода для твердйх замедлителей [16]. Се, Ьа, могут служить разбавителями для окисных топливных материалов атомных реакторов. Молекулярные суспензии иттрия и урана дают устойчивую радиацию и сравнительно недороги [17]. Для защиты от радиации разработаны высокоэффективные материалы, в состав которых входят помимо свинца редкоземельные металлы, поглощающие нейтроны. Один из таких материалов содержит 35% Е)у и 40% РЬ. В состав других материалов входят Сё и РЬ в сочетании с Оу и Материалы используются для защитных устройств в лабораториях, установках и реакторах [18]. [c.88]

    Второй метод получения металлического иттрия основан на образовании промежуточного сплава Y-Mg при восстановлении УРз кальцием. Процесс ведут в титановом тигле при 900—960° в атмосфере аргона. В состав шихты, помимо УРз и 10%-ного избытка Са, вводят безводный СаС1, и Mg. Получается сплав, содержащий 24% Mg. Выход металла > 99%. Mg и Са удаляются в вакууме (3-10" мм рт. ст.) при 900—950°. Содержание их после этого в иттрии 0,01 %. Компактный металл получают, переплавляя губку в дуговой печи в атмосфере гелия остаточное давление 10 мм рт. ст. Содержание кислорода в конечном продукте 0,12—0,25%. Уменьшить содержание кислорода до 0,1% можно, используя в качестве восстановителя литий или сплав Са-Ы. Еще более чистый металл получается, если брать шихту из УРз, Mgp2, ЫРи восстановитель—литий. Смесь фторидов после обработки фтористым водородом восстанавливают при 1000°, в результате получается сплав У-Mg и шлак из Ь1Р. После отгонки магния содержание кислорода в иттрии 0,05—0,15%. Рекомендуется также рафинировать сплавы У-Mg, экстрагируя расплавленными солями кислородсодержащие примеси. С этой целью сплав Y-Mg расплавляют и перемешивают со смесью УРз и СаС12 в атмосфере инертного газа при 950°. Содержание кислорода в конечном продукте 0,05% [148, стр. 136— 148]. [c.143]


    Скандий, иттрий. Скандий — металл, имеющий светло-желтую окраску, иттрий — серебристо-белый металл. В химических реакциях они довольно активны. Прп на-греванил реагируют со многими неметаллами (кислоро-. дом, галогенами, серой, водородом), иапример  [c.258]

    Азот. . Алюминий Ар гои. . Барий. . Бериллий Бор. . Бром. . Ванадий. Висмут. Водород. Вольфрам Гадолиний Галлий. Гафни11. Гелий. . Германий Гольмий Диспрозий Евроний Железо Золото Индий Иод. . Иридий Иттербий Иттрий Кадми11 Калий. Кальций Кислород Кобальт. Кремний Криптон Ксенон. Лантан. Литий Лютеций Магний. Марганец Медь. . Молибден Мышьяк 11атрий.  [c.14]

    Г Вернемся к рассмотрению материалов на основе классификации их па составу. Группа неметаллических неорганических ма--териалов также весьма обширна, как и группа органических материалов. Она включает разнообразные керамические материалы, как кислородсодержащие (фарфор, стекло, керамика на основе чистых тугоплавких оксидов алюминия, тория, магния, иттрия, бериллия и др., керамика сложного состава со специальными свойствами), так и бескислородные (нитриды, бориды и силициды, прозрачная керамика на основе халькогенидов цинка и кадмия, фторидов РЗЭ). Среди них важное место занимают силикатные цементы и бетоны, графитовые материалы (графопласты и графолиты, пироуглерод), а также солеобразные материалы на основе фосфатов и галогенидов. Неорганические материалы можно также разделить на две группы — природные и искусственные. Первые используют для изготовления крупногабаритных сооружений в виде самостоятельного конструкционного материала или в качестве футеровки металлических корпусов различных аппаратов. Горные породы — незаменимый конструкционный материал, в частности для химического производства (башни йодно-бромного производства, поглощения газообразного хлористого водорода и т. д.), а также в качестве наполнителей в производстве вяжущих силикатов — кислотоупорных цементов и бетона. Природные материалы трудно обрабатывать механически, что приводит к громоздкости выполненных из них сооружений. [c.145]

    В процессе обмена на лантан, проводимого при 25 °С, 16 атомов натрия, расположенных в местах Si, остаются незамещенными [29]. Повышение температуры до 82 °С и увеличение длительности обмена приводит к частичному замещению натрия в этих положениях. На рис, 7.9 показаны изотерхмы обмена в цеолите NaX иона натрия на трехвалентные редкоземельные ионы, такие, как лантан. Скорость процесса обдгена определяется, вероятно, стадией отщепления молекул воды от редкоземельных ионов в больших полостях. Подобные результаты получены и при изучении об.чена натрия на иттрий. Недоступность малых полостей для ионов лантана обусловлена высокой энергией дегидратации. Прп температурах выше 82 °С изотерма обмена, очевидно, имеет необратимый характер. Степень обмена крупных органических (алкиламмоние-вых) катионов в цеолите X уменьшается с увеличением размера алкильных групп илп с увеличением чис.ла таких групп, замещающих водород в ионе аммония (см. разд. Е). Цеолиты X и Y содержат приблизительно одинаковое число молекул воды в расчете на элементарную ячейку. В результате на 1 ион лантана в цеолите Y приходится 15 молекул воды, а в цеолите X — 9 молекул. [c.564]

    Оксисульфиды типа ЬпгОаЗ. Оксисульфиды получают прокаливанием сульфидов на воздухе или нагреванием смесей сульфидов с окислами. Они образуются также при прокаливании на воздухе любых сульфидов иттрия (наряду с сульфатом) [930], при нагревании СбгЗз в атмосфере влажного водорода при 500°С [927], по реакции между полуторными сульфидами и окислами [ 1603] или окса-латами [928] при 1350° С или, наконец, восстановлением основных сульфатов водородом при 1200—1300°С [886]. [c.37]

    Отчетливой границы между указанными группами нет, имеются элементы с промежуточным типом связи. Между ионными и металлическими находится группа лантаноидов, которая образует водородные соединения с металлическим типом связи до состава МеНа и с ионным — в области состава МеНа-з. В какой-то степени эти свойства предполагаются у гидридов иттрия и актиноидов. Гидрид магння является промежуточным между соединениями с ионными н ковалентными связями. Гидриды подгрупп бора н цинка представляют собой полимерные соединения с ковалентным типом связи, а соединения подгруппы меди с водородом — типичные переходные соединения от металлических к ковалентным. В молекулах соединений неметаллов VII группы с водородом уже есть определенная доля ионной связи [4]. А. Ф. Жигач и Д. С. Стаспневич [4] водородные соединения элементов 1—111В подгрупп выделяют в отдельную группу, основным признаком которой авторы считают существование водородных мостиковых связей. Последние служат причиной образования димеров молекул этих соедииеиий. Одиако, по мнению авторов, эта группа является переходной между ковалентными и металлическими водородными соединениями. [c.5]

    Режимы проведения гидрирования иттрия очень сильно зависят от чистоты используемого металла. Технически чистый иттрнй не поглощает водород при комнатной температуре Менее чистый иттрий способен к реакции с водородом н при низких температурах, но в этом случае результаты недостаточно устойчивы и индукционный период в ряде опытов настолько велик, что реакция практически не идет. [c.70]

    Для получения дигидрида иттрия используют аппарату[.у типа установки Сивертса. Водород получают термическим разложением гидрида урана или титана. Образцы металла перед гидр1фованием активируют нагреванием в вакууме при температуре 400° С в течение 30 мин. После антивацян в систему подают водород до давления [c.70]

    Получение тригидрида иттрия. По методу, предложенному А, М. Родиным и В. В. Грушиной [4], синтез гидрида УНз осуществляют по следующему режиму <усочки металла размером 1—3 мм промывают бензином и спиртом и помещают в вакуумную установку. Образцы обезгаживают в вакууме Ы0 мм рт. ст. при температуре 300° С в течение 2 ч, после чего нагревают в водороде при атмосферном давлении в течение 30 мин при 300° С с последующим постепенным охлаждением в нем до комнатной температуры. Водород получают термическим разложением гидрида титана. Количество поглощаемого водорода определяют по изменению давления в системе во время насыщения. В результате гидрирования получают гидрид иттрия с соотношением атомов Н Ме=2,94. Полученный гидрид порошкообразный, небольшие кусочки легко растираются в порошок. [c.70]

    Скандий и иттрий-серебристо-белые, тускнеющие иа воздухе металлы. Их выделяют электролизом расплавов хлоридов. Иттрий разлагает воду с выделе1шем водорода и образованием гидроксида. Гидроксиды этих элементов обладают основными свойствами. Катионы скандия (III) и иттрия(III) бесцветны. Оксид скандия(П1) ЗсаОз используется для изготовления ферри-товых сердечников электронных приборов, в частности ЭВМ. Смесь оксидов иттрия и ванадия применяется в качестве красного люминофора в цветных кинескопах. [c.405]

    Логично предположить, что на окиси иттрия имеет место адсорбция водорода в виде протонов и она является причиной увеличения проводимости окиси иттрия. Этот тип адсорбции не дает заметных полос поглощения в инфракрасном спектре, однако увеличение проводимости образца сопровождается при снятии инфракрасных спектров уменьшением пропускания. Важно также отме- [c.189]

    Образцы окиси иттрия одного химического строения и одной кристаллографической модификации, подвергнутые различной термической обработке, отличаются своей вторичной структурой, спектрами пропускания, рентгенограммами (образец 2 более кристалличен) и величинами электропроводности. Сравнение каталитических данных с данными по электропроводности приводит к выводу, что увеличение проводимости окиси иттрия — пнполупроводника — благоприятствует протеканию акцепторной реакции дегидрирования. Согласно представлениям электронной теории, при добавлении донорной примеси, в данном случае водорода, к п-полупроводнику следует ожидать усиления дегидрирующей способности контакта, что нами и было установлено экспериментально. [c.193]


Смотреть страницы где упоминается термин Иттрий — водород: [c.30]    [c.378]    [c.148]    [c.144]    [c.53]    [c.67]    [c.76]    [c.24]    [c.501]    [c.59]    [c.108]    [c.145]    [c.27]    [c.501]    [c.181]    [c.189]    [c.190]    [c.192]   
Смотреть главы в:

Гидриды переходных металлов -> Иттрий — водород




ПОИСК





Смотрите так же термины и статьи:

Иттрий



© 2025 chem21.info Реклама на сайте