Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метод электрофореза и электролиза

    Задача электрофореза в большинстве случаев заключается не в идентификации ионов, образующихся в результате электролиза, и оценке их распределения, а в определении скорости миграции к электродам добавляемых заряженных частиц. При условии, что расстояние между электродами достаточно велико, разницу в скоростях движения индивидуальных частиц можно использовать для разделения смесей. Применяют два метода электрофореза метод свободно движущейся границы — фронтальный электрофорез и зонный электрофорез. [c.465]


    Метод электрофореза и электролиза [c.72]

    Установление этой связи между величиной и знаком заряда частиц радиоактивных изотопов и их состоянием в растворе и является содер>канием метода электрофореза (в случае коллоидных частиц) или электролиза (для ионов). [c.50]

    Электрофоретические покрытия. КЭП помимо электролиза можно получать методом электрофореза 315-324 Таким образом удается ввести в состав покрытия вещества практически любой природы и состава. Кроме того, ускоряется скорость осаждения покрытия, упрощается технологический процесс, образуются более равномерные по толщине покрытия. Комбинируя электролитические и электрофоретические процессы, создают различные виды композиционных материалов. [c.149]

    Описана технология нанесения металлических покрытий электролизом из водных растворов (хромирование, цинкование, лужение) и солевых расплавов (алюминирование, лужение), а также получения покрытий методом испарения в вакууме и метод электрофореза (алюминирование, цинкование). Освещена теория скоростного отжига и тепловой дрессировки , а также технология нанесения новых защитных полимерных покрытий. Показаны перспективы дальнейшего развития производства жести и тонкого листа с покрытиями. [c.160]

    Аппараты электрообработки могут создавать однородное или неоднородное электрическое поле [II, а также реализовать электрический разряд. Из методов обработки — электролиз, электрохимическая коагуляция, электрофорез, электрокоагуляция, электрический разряд — наиболее изучена электрокоагуляция с использованием однородного поля. В связи с этим представляют интерес конструкции электрокоагуляторов и их применение. [c.179]

    Для электрической ориентации частиц имеется гораздо больше возможностей. Исследования показывают (Толстой, 1955 г.), что анизометрические коллоидные частицы в водных растворах обычно обладают электрическими дипольными моментами, достаточными для того, чтобы за время достижения стационарной ориентации частиц в электрическом поле не произошло заметного разогревания раствора за счет прохождения через него тока (при надлежащей очистке раствора от электролита). Коллоидные частицы и макромолекулы могут иметь как собственный дипольный момент, определяемый их строением, так и дипольный момент, индуцированный электрическим полем. Если использовать постоянное электрическое поле (или постоянные импульсы напряжения), то ориентация частиц будет обусловлена взаимодействием с полем обоих видов диполей, и вклад от каждого из них в общий эффект выделить нелегко. Автор с сотрудниками (1959 г.) добились ориентации коллоидных частиц (галлуазита, бензопурпурина и многих других веществ в воде) с помощью высокочастотного электрического поля при частоте порядка десятков и сотен килогерц. При этом было пока зано, что влияние собственного дипольного момента, который жестко связан с частицей и заставляет ее колебаться в переменном поле, полностью подавлено из-за инерционности частицы. В этом случае она ориентируется только за счет взаимодействия с полем индуцированного момента, который, меняя направление синхронно с полем, создает постоянный момент силы. Величина этого момента в водных растворах достаточна для ориентации частиц. По-видимому, он возникает за счет поверхностного слоя воды. Если эта гипотеза подтвердится, то данный метод электрической ориентации частиц окажется универсальным для водных растворов. Применение высокочастотных электрических полей помогает значительно ослабить или устранить такие мешающие явления, как электролиз, поляризация и электрофорез, что делает метод особенно перспективным. Если же исследования этим методом дополнить параллельными исследованиями при ориентации в постоянном электрическом поле, то можно оценить величину постоянного диполь-ного момента частиц и найти угол между постоянным и индуцированным дипольными моментами. Например, при изучении частиц, галлуазита выяснилось, что индуцированный момент ориентиро  [c.33]


    Термодинамические методы основаны на переходах вещества из одной фазы в другую, при этом химический потенциал вещества понижается [2, с. 16]. К этому классу методов очистки относятся перекристаллизация, перегонка (дистилляция), возгонка, хроматография, адсорбция с последующей десорбцией, электролиз, электрофорез, термодиффузия и многие другие. К этому же классу методов можно отнести и отделение одного вещества от другого при помощи химической реакции. Если реакции подвергается нужное вещество, то после отвода его из зоны реакции в виде некоторого нового соединения последнее разлагают для получения исходного вещества. В ряде случаев четкой границы между двумя классами методов провести не удается. [c.99]

    Электрокоагуляционный метод очистки сточных вод используется в отечественной практике для выделения хрома. Кроме того, в некоторых случаях он может быть применен и для очистки стоков от ионов тяжелых металлов. При реализации этого метода протекают следующие физико-химические процессы электролиз воды, поляризация частиц, электрофорез, окислительно-восстановительные процессы, взаимодействие продуктов электролиза друг с другом. [c.210]

    Для разделения и концентрирования компонентов анализируемой смеси используют методы осаждения, соосаждения, экстракции, хроматографии, электролиза, электрофореза, дистилляции, сублимации, зонной плавки, флотации и др. В основе большинства методов разделения лежит принцип избирательного распределения компонентов пробы между двумя разделяющимися фазами. Открываемый компонент пробы переводят по возможности полностью в одну из фаз. [c.120]

    Беньковский [49] высказал предположение о перспективности применения таких физико-химических методов разделения смолистых веществ нефти, как электрофорез, электродиализ, высоковольтный электролиз, термодиффузия, а также метод, основанный на способности смол образовывать молекулярные соединения. [c.451]

    Путем электролиза можно выделить Ag, ЗЬ, Ра, Ро, и, Ри и др. В последнее время показана возможность использования электрохимических методов для разделения и выделения радиоактивных изотопов редкоземельных и ряда других элементов. С помощью непрерывного электрофореза с применением лимонной кислоты в качестве комплексообразователя удалось осуществить разделение Ьа, Се, V, Ей, а также Се и Рт. При разделении лантанидов этим методом более эффективной, чем лимонная кислота, оказалась этилендиаминтетрауксусная кислота [И]. [c.565]

    Выделение свободных от носителей циклотронных изотопов осуществляется чаще всего при помощи методов, основанных на обычных процессах радиохимии ионном обмене, экстракции, соосаждении, дистилляции. К числу реже применяемых методов относятся выделение радиоколлоидов, выщелачивание, электролиз, хроматография и электрофорез на бумаге [10]. [c.723]

    Электрохимические методы. По направлению движения частиц при электролизе или электрофорезе и изменению этого движения с изменением состава раствора можно судить о заряде ионов и коллоидных частиц. С ростом pH раствора катионы гидролизируются, [c.102]

    В химических исследованиях метод меченых атомов применяется для изучения строения молекул, механизма и кинетики химических реакций, процессов адсорбции, хроматографии, электролиза и электрофореза, определения констант равновесия и распределения, энергии активации процессов, растворимости малорастворимых веществ, скорости испарения и диффузии, измерения поверхности веществ, размера частиц, давления пара, количественного анализа и т. п. [c.503]

    Для очистки клея от примесей (электролитов, белков, цветных пигментов) может быть использован комбинированный метод электролиза и электрофореза. [c.173]

    Гораздо более эффективным методом обесцвечивания является электродиализ. Этот метод используется для быстрого выявления зон с высокой концентрацией белка. Для проведения электролиза достаточно простого нестабилизованного источника постоянного напряжения. Требуемый ток зависит от направления электродиализа в геле. С помощью электродных сосудов и источника питания, аналогичных применяемым при дискретном электрофорезе, удается осуществить более длительный и более сложный продольный электродиализ. Гели, имеющие форму круглых столбиков, помещают в трубки, диаметр которых лишь немного больше диаметров столбиков. В нижней части трубки сужаются, так что гель образует затвор. Электродные камеры и трубки с гелем заполняют 7%-ной уксусной кислотой. После включения тока за процессом обесцвечивания можно наблюдать визуально. Наиболее быстрым методом обесцвечивания является электродиализ в направлении, перпендикулярном длинной оси геля. Для проведения обесцвечивания разработаны специальные приборы, выпускаемые рядом фирм. В маленьком приборе конструкции Прусика [78] обесцвечивание можно провести за 30—45 мин. Этот прибор (рис. 12.10) можно легко изготовить в любой лаборатории. [c.309]


    В производстве резины, где требуется выделять полужидкие частицы каучука из латекса, латекс подвергают электрофорезу анодом служит движущееся металлическое полотно, на котором осаждаются частицы латекса и выносятся на этом полотне из ванны. При производстве прорезиненных тканей ленту ткани пропускают вблизи неподвижного анода частицы латекса передвигаясь к аноду, удерживаются на ткани. Для гуммирования металлических деталей аппаратов с антикоррозионными целями деталь погружают в латекс каучука, делая ее анодом. После образования на детали каучуковой пленки ее вулканизируют. Широко распространен электрофоретический метод нанесения тонких слоев изолирующего покрытия из суспензии алунда (плавленного корунда) на подогреватели электронных ламп или карбонатов щелочноземельных металлов на катоды этих ламп. Комбинацией электролиза и электрофореза достигается довольно высокая степень очистки воды. Очищаемая вода проходит последовательно ряд ячеек, каждая из которых разделена двумя пористыми диафрагмами на три пространства анодное, среднее и катодное. Под действием электролиза ионы примесей электролитов свободно проходят сквозь поры диафрагмы, концентрируясь в электродных пространствах, откуда вымываются промывными водами. Твердые коллоидные частицы примесей при своем передвижении к электроду удерживаются поверхностью диафрагм. [c.33]

    При формировании покрытия методом электроосаждения одновременно протекает несколько процессов электролиз, электрофорез и электроосмос. В случае электроосаждения пленкообразователей в виде водных растворов преобладает процесс электролиза. [c.121]

    Для субстехиометрического выделения элементов чаще всего используются методы экстракции, ионного обмена, бумажной хроматографии, электрофореза, электрохимические методы (электролиз, кулонометрия при контролируемом потенциале), а также техника кольцевой печи. Дистилляция и адсорбция применяются лишь в отдельных случаях. В развитие субстехиометрической экстракции предложен метод многоэлементной субстехиометрической экстракции, основанный на различии констант экстракции нескольких элементов, присутствующих одновременно в растворе [67, 187]. [c.117]

    Изучая скорость передвижения коллоидных частиц при электрофорезе, можно оценить величину их заряда. Получаемые как по этому, так и по другим методам значения приводят в общем к согласным результатам, указывающим прежде всего на то, что заряд большинства коллоидных частиц значительно больше, чем у отдельных ионов, С увеличением размеров частиц возрастает обычно и их заряд если при диаметре частицы в 1 М.МК он отвечает 2—3 единицам элементарного количества электричества (равного заряду электрона), то для частиц с диаметром 100 ммк заряд увеличивается до сотен и тысяч таких единиц. При всей громадности этой величины, по сравнению с числом образующих коллоидную частицу атомов или молекул она все же очень мала. Поэтому при электрофорезе переносится гораздо больше вещества, чем то отвечало бы закону электролиза. [c.122]

    Все эти методы используют электродные реакции и таким образом являются приложением электролиза. Изучение процессов, протекающих между электродами, называется ионофорезом. если речь идет об обычных электролитах, и электрофорезом, если изучается перенос коллоидных или микроскопических частиц. В этом обзоре будут рассмотрены оба процесса. Экономическое значение этих явлений невелико, но оно растет. Научное значение этих явлений более важное и также все возрастает. [c.239]

    Разделение компонентов пробы на группы. В химическом анализе щироко используют многочисленные методы разделения веществ осаждение, экстракцию, ионообменную и распределительную хроматографию, ректификацию, отгонку, электролиз и некоторые специальные методы (электрофорез, метод молекулярных сит и др.). Однако ввиду того, что ни один из указанных методов не обеспечивает полного выделения и не гарантирует абсолютной чистоты отдельных фракций по отделяемым компонентам, операции разделения неизбежно отягощены погрещностями, занижающими или завыщающими конечный результат. [c.19]

    Электрохимические методы, характеризующиеся быстротой выполнения и избирательностью, применяются для удаления мешающих элементов и для выделения или концентрирования элементов с целью последующего их определения. Эти методы часто выгодно отличаются от других тем, что разделение проводится без введения дополнительных реактивов. Электролиз и электродиализ при контролируемом потенциале обеспечивают возможность избирательного извлечения элементов из раствора. Методы электрофореза и электромиграцин могут быть использованы для целей разделения и исследования состояния микроколичеств элементов в растворах. [c.181]

    Для выделения некоторой части искомого соединения применяют любые методы, позволяющие выделить чистое соединение экстрагирование, хроматографию, перегонку, осаждение, электролиз, электрофорез и т. п. Определение содержания выделенного вещества выполняется колориметрическим, спектрофотометрпческим, весовым, объемным и другими методами. Можно также рассчитать содержание выделенного вещества, ис.ходя из объема и концентрации реагента, примененного для осаждения. [c.353]

    Электрофорез (от электро и греч. phoresus — перемещение) — передвижение заряженных частиц (коллоидных) в жидкой нли газообразной среде под действие.м внешнего электрического поля. Э. применяют для обезвоживания торфа, красок, очистки глины и каолина для химической промышленности, для осаждения кау= чука и латекса, дымов и туманов, для изучения состава растворов и т. д. Электрохимические методы анализа — большинство их основано на электролизе. Сюда относят электрогравиметрический ана.тиз (электроанализ), внутренний электролиз, контактный обмен металлов (цементация), полярографический анализ, кулопометрию и др. Кроме того, к Э, м. а. относят методы, основанные на измерении электропроводности (кондуктометр и я) или потенциала электрода (потенциометрия). Некоторые электрохимические методы применяются для нахождения конечной точки титрования (амперометрическое титрование, коидуктометрическое титрование, потенциометрическое титрование, кулонометрическое титрование), Электрохимический ряд активности (напряжения) металлов фяд активности металлов) показывает их сравнительную активность в реакциях окисления-восста новления (слева направо восстановительная активность уменьшается)  [c.157]

    Метод радиоактивных индикаторов весьма эффективен при контроле чистоты равделения смесей хроматографией, электрофорезом, экстракцией, электролизом и т. п. [c.522]

    Разработка принципиально новых лакокрасочных материалов приводит к развитию новых прогрессивных методов их переработки (нанесение и отверждение). За последние годы во многих зарубежных странах, а гакже в СССР развивается новый способ нанесения лакокрасочных материалов — электроосаждение - . Образование покрытий при эгом происходит в результате электрофореза с одновременным протеканием электроосмоса и электролиза. Окраска. методом электроосаждения производится в ванне при наложении постоянного электрического тока. Окрашиваемое изделие служит анодом, стенки ванны — катодом. Частицы водных растворов красок заряжаются отрицательно, движутся к окрашиваемому изделию и осаждаются на нем, в первую очередь на выступающих частях изделия (где плотность силовых линий больше), а затем вся поверхность покрывается равномерным изолирующим слоем краски. Применение этого метода стало возможным в связи с появлением водорастворимых лакокрасочных материалов на основе смол, образующих в воде коллоидные растворы или эмульсии. За рубежом выпускают водорастворимые лакокрасочные материалы для электроосаждения на основе маслянофенольных композиций, эпоксиэфиров, уралкндов, алкидно- и меламино-формаль-дегндных смол. Имеется большое число полностью автоматизированных промышленных установок для электроосаждения. [c.117]

    Электрохимические методы основаны на избирательном распределении компонентов в двухфазной или однофазной системе в результате различия в электрохимических или электрокинетических свойствах. Это электроосаждение, внутренний электролиз (цементация), электрофорез, ионофорез, электродиализ, электрофильтрация и др. [c.115]


Смотреть страницы где упоминается термин Метод электрофореза и электролиза: [c.135]    [c.72]    [c.13]    [c.63]    [c.30]    [c.451]    [c.207]    [c.207]    [c.246]    [c.568]    [c.685]   
Смотреть главы в:

Основы радиохимии -> Метод электрофореза и электролиза

Основы радиохимии -> Метод электрофореза и электролиза




ПОИСК





Смотрите так же термины и статьи:

Электрофорез



© 2025 chem21.info Реклама на сайте