Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрофорез методом переноса

    Электроосмос в настоящее время широко применяется для решения многих практических задач. Например, при возведении плотин, дамб и других гидротехнических сооружений путем намыва грунта из водоемов возникает необходимость быстрого удаления избыточной влаги. Для этого в намытый грунт вводят металлические перфорированные электроды (иглофильтры), соединенные поочередно с различными полюсами внешнего источника тока. Включение электрического тока вызывает электроосмотический перенос воды к катодам, откуда ее удаляют откачиванием в то же время твердая масса отжимается к аноду вследствие электрофореза. Метод используют в настоящее время для осушения заболоченных участков местности (с последующим закреплением) при прокладке транспортных магистралей, для обезвоживания различных осадков, обычно в сочетании с фильтрацией путем наложения электрического поля на фильтр-прессы. [c.196]


    Электрофорез — явление переноса твердых дисперсных частиц в жидкой дисперсионной среде под влиянием постоянного электрического тока. Для нанесения покрытия методом электрофореза изделия погружают в ванну с взвешенными частицами [74, 75]. Обычно одним электродом является изделие, другим — корпус ванны (рис. 25). При наложении тока частицы в первую очередь осаждаются на выпуклых поверхностях, но постепенно происходит перераспределение силовых линий и, в конечном счете, получается плотное, однородное по толщине, покрытие по всей поверхности, включая сложные вогнутые формы (резьбу, пазы и т. п.). Чтобы предотвратить седиментацию, суспензию непрерывно перемешивают размер частиц не должен превышать 10 мкм. Кроме того, вводят электролиты-стабилизаторы (Н+, АР+, ТЬ + и другие) и органические пленкообразующие и поверхностно-активные веще- [c.62]

    В методе подвижной границы скорость электрофореза измеряют по скорости, с которой движется в электрическом поле граница между коллоидной дисперсией и ее ультрафильтратом. Применимость этого метода связана с тем фактом, что электропроводность коллоидной системы обычно лишь немного превышает электропроводность чистой дисперсионной среды. Коллоидные частицы, обладающие в электрическом поле почти одинаковой с ионами подвижностью, имеют в силу своих сравнительно больших размеров гораздо меньшую концентрацию. Поэтому они слабо участвуют в переносе электричества через раствор, а электропроводность среды почти не изменяется от их присутствия. Это обстоятельство оказывается очень важным, так как если бы два раствора, образующие границу, по скорости которой определяется подвижность данного компонента в электрическом поле, имели разную электропровод- [c.155]

    При электрофорезе с последующим хроматографированием на бумагу, пропитанную раствором электролита, наносят каплю анализируемого раствора и проводят электрофорез, подключая концы листа бумаги через электроды к источнику постоянного тока. После окончания электрофореза бумагу вынимают из прибора, сушат и переносят в камеру для хроматографирования по способу восходящей или нисходящей хроматографии. После окончания хроматографирования бумагу проявляют и проводят качественные и количественные определения. Метод раздельного электрофореза и хроматографирования позволяет проводить эти две операции при различных значениях pH, что улучшает возможности разделения. [c.220]


    Знак заряда коллоидной частицы зависит от заряда ионов, адсорбированных агрегатом, и может быть определен методами электрофореза — перемещением во внешнем электрическом поле коллоидной частицы, и электроосмоса — переносом жидкой дисперсионной среды. Очень просто знак заряда определяется по характеру взаимодействия коллоидных частиц с целлюлозой. [c.420]

    При развитом теплоэнергетическом хозяйстве, при большом количестве ТЭЦ окружающее пространство загрязняется дымом. Вследствие высокой дисперсности твердой фазы в дымах очистка их обычными методами (механическими) не может быть обеспечена. Поэтому используются электрические свойства дыма как коллоидной системы. Частицы дымов обладают зарядом, который легко образуется при адсорбции ионов, но заряд этих частиц невелик и может быть разного знака в связи с различным химическим составом частиц. Для очистки дымовых газов используется принцип электрофореза, который проводится при очень больших напряжениях (порядка десятков тысяч вольт). При этом катод, который расположен обычно в середине специальных газовых камер, служит источником сильного потока электронов, ионизирующих газ, благодаря чему частицы дыма получают больший и всегда отрицательный заряд и быстро переносятся к аноду, которым служат стенки камеры. Со стенок камеры масса пыли оседает на дно. [c.177]

    Для совершенствования и создания новых энерго- и ресурсосберегающих, высокопроизводительных, малоотходных и экологически приемлемых электрохимических технологий наиболее перспективны электролиты-коллоиды. Однако механизм анодных и катодных процессов в них изучен недостаточно. В связи со сложностью процессов и многочисленностью факторов, влияющих на их скорости и механизмы, были использованы методы математического моделирования. Разработаны математические модели массопереноса компонентов в диффузионном слое электрода в электролитах-коллоидах для процессов анодного растворения и электроосаждения цветных металлов. Для описания процесса транспортировки ионов в диффузионном слое использованы уравнения Нернста-Планка, химического равновесия и электронейтральности. Величина потока электрофореза коллоидов вычислена из уравнения Смолуховского. Граничные условия рассчитывали, решая систему уравнений, включающую уравнения материального баланса и химического равновесия. На основании выявленных закономерностей в электролитах-моделях с известными концентрациями компонентов и результатов расчета состава диффузионного слоя показано, что механизм увеличения предельных скоростей анодного растворения и электроосаждения металлов в электролитах-коллоидах обусловлен преимущественно электрофоретическим переносом присутствующих в растворе или образующихся в диффузионном слое вследствие вторичных реакций коллоидных соединений металлов. Определены оптимальные условия реализации процессов. [c.63]

    Изложенному представлению о существе электрофореза, казалось бы, противоречат сделанные ранее наблюдения об односторонности этого явления, т. е. наблюдения, показавшие, что при электрофорезе переносится только коллоидное вещество, но не происходит переноса ионов. Однако противоречие здесь только кажущееся, так как для образования на частицах двойного электрического слоя требуется ничтожно малое количество электролита, которое очень трудно определить количественно. Так, было найдено, что при получении золя сульфида мышьяка, для которого стабилизатором являются молекулы сероводорода, на 0,67 г АзгЗз, выделившегося на аноде, приходилось всего 10 г водорода, выделяющегося на катоде. Понятно, что такое количество водорода с помощью обычных аналитических методов определить [c.173]

    В начале этой главы описаны явления электрофореза и электроосмоса в самом общем виде. Рассмотрим элементарную теорию электрокинетических явлений и применяемые на практике методы определения электрофоретической подвижности и скорости электроосмотического переноса более подробно, поскольку эти величины позволяют вычислить весьма важную характеристику коллоидных систем — -потенциал. [c.197]

    Метод капиллярного электрофореза также используется в /х-СПА-устройствах. Проба и буферный раствор вводятся в капилляр. При создании разности потенциалов на концах капилляра наблюдается протекание двух процессов. Первый, называемый электрофоретическим разделением, представляет собой движение положительно или отрицательно заряженных индивидуальных ионов в жидкости под влиянием приложенного поля. Второй процесс называется электро-осмотическим переносом и приводит к движению всей жидкости в капилляре. Реализация этого процесса обусловлена существованием двойного электрического слоя (слоя Гельмгольца) вблизи стенок капилляра. Этот слой образован неподвижными отрицательными зарядами на стенках капилляра (ионизированные силанольные группы) и положительно заряженными ионами из жидкости, которые притягиваются отрицательными зарядами. Если вектор напряженности электрического поля направлен вдоль капилляра, то электростатические силы приводят в движение слой подвижных положительно заряженных ионов. В конечном счете, благодаря молекулярному взаимодействию между слоями жидкости (вязкость жидкости), вся жидкость в капилляре приходит в движение. [c.646]


    Для исследования электрофореза микроскопически видимых частиц суспензий, бактериальных клеток, а также белков, адсорбированных на частицах стекла или кварца, используются методом микроэлектрофореза, наблюдая под микроскопом перенос частиц в электрическом поле в специальной микрокювете. [c.109]

    ЭОП присутствует во всех электрофоретических методах разделения, так как никогда не удается полностью исключить возникновение поверхностных зарядов. Он может привести, с одной стороны, к концентрационному перемещению электрофоретических зон, однако, с другой стороны, играет существенную и иногда решающую роль при переносе зон через капилляр. Из-за постоянно существующего ЭОП при капиллярном электрофорезе детектор во всех случаях располагается в непосредственной близости от катода. [c.11]

    Анионы сами переносятся к катоду, соответственно скорость их электрофоретического перемещения ниже, чем скорость ЭОП. Таким образом, ЭОП позволяет проводить разделение катионных и анионных соединений в одном анализе (сравни с рис. 2). При других методах капиллярного электрофореза (например, при мицеллярной электрохроматографии) ЭОП используется исключительно для переноса проб (частично незаряженных) к детектору. [c.11]

    Электрофорез с последующим хроматографированием осуществляется следующим образом. Хроматографическую бумагу пропитывают раствором какого-либо летучего электролита, например, уксусной кислотой, наносят каплю анализируемой смеси и проводят электрофорез, подключая бумагу через электроды к источнику постоянного тока. После окончания электрофореза бумагу вынимают из прибора, сушат и переносят в камеру для хроматографирования по методу восходящей или нисходящей хроматографии. Обработка хроматограммы после окончания хроматографирования ничем не отличается от обычной. Метод раздельного электрофореза и хроматографирования позволяет производить эти две операции при различных значениях pH, что существенно увеличивает возможности разделения.  [c.258]

    Очень важной областью применения радиоавтографии является обнаружение радиоактивного ДНК-зонда после его гибридизации с препаратом ДНК, подвергнутым электрофоретическому разделению. К сожалению, провести гибридизацию в самом геле невозможно, поскольку зонд не может в него проникнуть. Поэтому ДНК после электрофореза переносят на нитроцеллюлозный или найлоновый фильтр по методу Саузерна (Саузерн-блоттинг) или с помощью элюции. Расположение молекул ДНК на фильтре в точности соответствует таковому в геле. Перенесенную на фильтр ДНК подвергают [c.65]

    Перенос материала с помощью пришивания, а также использование специфических химических реакций с некоторыми боковыми группами аминокислотных остатков позволили разработать особый метод электрофореза, так называемый диагональный электрофорез. С его помощью можно довольно легко выделять пептиды, имеющие в своем составе цистеин, цистин, метионин, гистидин или лизин. [c.96]

    Явления электрофореза могут быть исследованы макроскопическими и микроскопическими методами. В первом случае применяются методы, аналогичные методам Лоджа и Гитторфа для определения чисел переноса и подвижности ионов. [c.203]

    Экспериментально определяется перенос в электрическом поле коллоидных частиц (электрофорез) или среды (электроосмос). Можно осуществить и обратные измерения разности потенциалов, возникающей при механическом движении коллоидных частиц (потенциал оседания) или среды (потенциал течения), но эти методы редко применяются. [c.107]

    II тонкослойных пластинках), уступившему было своп позиции электрофорезу в гелях и ЖХВД. Наиболее интересные результаты достигаются при сочетании такого электрофореза с ТСХ в виде двумерного фракционпрования. Аналогичное сочетание с использованием электрофореза в геле возможно, но затруднительно ввиду сложности количественного переноса вещества с геля на пластинку. Впрочем, впечатляющее развитие в последнее время методов переноса веществ из гелей на фильтры ( блоттинга ) может привести к пересмотру этого утверждения. Ниже мы рассмотрим целый ряд примеров использования двумерного фракционирования с участием электрофореза, не фиксируя внимания на общих закономерностях последнего, поскольку он был подробно рассмотрен нами (для гелей) в одной из предыдущих книг серии, а отмечая лпшь те особенности, которые характерны именно для электрофореза на твердых носителях. [c.458]

    Практическое применение. Электроосмос используют для обезвоживания пористых тел - при осушке стен зданий, сыпучих материалов и т. п., а также для пропитки материалов. Все шире применяют электроосмотич. фильтрование, сочетающее фильтрование под действием приложенного давления и электроосмотич. перенос жидкости в электрич. поле. Использование электрофореза связано с нанесением покрытий на дета сложной конфигурации, для покрытия катодов электроламп, полупроводниковых деталей, нагревателей и т. п. Этот метод применяется также дня фракционирования полимеров, минеральных дисперсий, для извлечения белков, нуклеиновых к-т. Лекарств, электрофорез - метод введения в организм через кожу или слизистые оболочки разл. лек. средств. Эффект возникновения потенциала течения используется для преобразования мех. энергии в электрическую в датчиках давления. [c.430]

Рис. 36.5. Блоттинг-перенос. По методу Саузерна тотальную ДНК, выделенную из культуры клеток или ткани, обрабатывают одной или несколькими рестриктазами и полученную смесь фрагментов подвергают электрофорезу в агарозном или полиакриламидном геле. ДНК, несущая отрицательный заряд, мигрирует к аноду. Небольшие фрагменты двигаются быстрее крупных. После окончания электрофореза разделенные фрагменты ДНК подвергают мягкой денатурации, инкубируя гель в растворе щелочи. На следующем этапе гель накладывают на нитроцеллюлозный фильтр. Фрагменты ДНК переносят на нитроцеллюлозу с помощью методических приемов, разработанных Саузерном, и фиксируют полученную нитроцеллюлозную реплику тепловой обработкой. Далее реплику инкубируют с меченым кДНК-зондом, гибридизую-щимся с соответствующим комплементарным фрагментом ДНК на нитроцеллюлозном фильтре. После интенсивной промывки фильтр помещают на рентгеновскую пленку. Фиксируемые на радиоавтографе сигналы соответствуют расположению фрагментов ДНК, комплементарных последовательности зонда. Метод Нозерн-блот (для анализа РНК) принципиально не отличается от метода переноса по Саузерну (Саузерн-блог анализа). Тотальную РНК подвергают электрофорезу. Сама процедура переноса РНК из геля на фильтр несколько отличается от метода Саузерна, поскольку молекулы РНК менее стабильны, чем молекулы ДНК. Метод Вестерн-блот применяется для выявления определенных белков с помощью Рис. 36.5. Блоттинг-перенос. По <a href="/info/1338361">методу Саузерна</a> тотальную ДНК, выделенную из культуры клеток или ткани, обрабатывают одной или несколькими рестриктазами и <a href="/info/157936">полученную смесь</a> фрагментов подвергают электрофорезу в агарозном или <a href="/info/105837">полиакриламидном геле</a>. ДНК, несущая <a href="/info/17611">отрицательный заряд</a>, мигрирует к аноду. Небольшие фрагменты <a href="/info/1796849">двигаются быстрее</a> крупных. <a href="/info/1092680">После окончания</a> <a href="/info/1339061">электрофореза разделенные фрагменты</a> ДНК подвергают мягкой денатурации, инкубируя гель в <a href="/info/122345">растворе щелочи</a>. На следующем этапе гель накладывают на <a href="/info/611044">нитроцеллюлозный фильтр</a>. Фрагменты ДНК переносят на нитроцеллюлозу с <a href="/info/572789">помощью методических</a> приемов, разработанных Саузерном, и фиксируют <a href="/info/1815996">полученную нитроцеллюлозную</a> реплику <a href="/info/431544">тепловой обработкой</a>. Далее реплику инкубируют с меченым кДНК-зондом, гибридизую-щимся с соответствующим <a href="/info/490410">комплементарным фрагментом</a> ДНК на <a href="/info/611044">нитроцеллюлозном фильтре</a>. После <a href="/info/1587091">интенсивной промывки фильтр</a> помещают на <a href="/info/140144">рентгеновскую пленку</a>. Фиксируемые на радиоавтографе сигналы <a href="/info/1284698">соответствуют расположению</a> фрагментов ДНК, <a href="/info/283297">комплементарных последовательности</a> зонда. Метод Нозерн-блот (для анализа РНК) принципиально не отличается от <a href="/info/30433">метода переноса</a> по Саузерну (Саузерн-блог анализа). Тотальную РНК подвергают электрофорезу. Сама процедура переноса РНК из геля на фильтр несколько отличается от <a href="/info/1338361">метода Саузерна</a>, поскольку молекулы РНК менее стабильны, чем молекулы ДНК. <a href="/info/1393097">Метод Вестерн</a>-блот применяется для выявления <a href="/info/102583">определенных белков</a> с помощью
    Хиерхольцер и др. [15] описали методику, позволяющую с помощью ELISA количественно выявлять белковые полосы после электрофореза и переноса белков на нитроцеллюлозные мембраны, так называемый метод вестерн-блотинга (см. разд. 3.7.1). Преимущество этого метода состоит в том, что он не требует использования радиоактивных изотопов. [c.142]

    Ранее схожий метод мультиплексной геномной прогулки был применен для определения нуклеотидной последовательности неклони-рованного гена пируваткиназы Е. соИ [Ohara et al., 1989]. Суть такой прогулки , весьма напоминающей праймерную (описанную ниже в разделе 8.4), заключается в расщеплении тотальной ДНК несколькими подходящими рестрикционными эндонуклеазами, разделении полученных фрагментов в денатурирующем секвенирующем гель-электрофорезе, их переносе на нейлоновый фильтр и многочисленных гибридизациях с мечеными олигонуклеотидами (рис. 8.3). [c.239]

    При анализе разделенных электрофорезом молекул ДНК широкое распространение получил метод переноса нуклеиновых кислот из агарозных гелей на нитроцеллюлозную бумагу, разработанный Е. Саузерном в 1975 г. в отечественной литературе его принято называть блоттингом по Саузерну (от англ. blotting — промокание). Сначала молекулы ДНК (или их фрагменты), разделенные по размерам электрофорезом в пластинах агарозного геля, денатурируют шелочью, после нейтрализации щелочи [c.56]

    И менее точен, но зато значительно проще, чем метод Тизелиуса. На полоску фильтровальной бумаги, увлажненной буферным раствором, наносят в форме поперечной черточки или пятна исследуемый биоколлоидный раствор. Полоску помещают в горизонтальном положении в закрытое пространство, а концы ее погружают в буферный раствор, где находятся электроды. После подключения источника электродвижущей силы электрическое поле вызывает движение компонентов, находящихся в черточке или пятне, вдоль полоски. Скорость перемещения компонентов зависит от их электрофоретической подвижности. Через некоторое время электрофорез прекращают, бумагу высушивают и погружают в раствор красителя, который на биоколлоиде адсорбируется сильнее, чем на бумаге. По полученному изображению видно положение компонентов в конце электрофореза, и можно судить об их числе и электрофоретической подвижности. Из сказанного выше видно, что бумага играет роль пористой среды, препятствующей растеканию компонентов и их конвективному перемешиванию со средой, в которой протекает электрофорез . В последнее время вместо бумаги используют гелеобразные среды (агар-агар, желатин), которые дают более резко очерченные зоны. Электрофорез на бумаге (и в других средах) сопровождается побочными явлениями, такими, например, как перенос вещества, вызываемый миграцией испаряющегося буфера (Машбёф, Ребейрот и др., 1953 г.). Кроме того, было установлено (Шелудко, Константинов, Цветанов, 1959 г.), что, например, в желатине не только сама электрофоретическая подвижность некоторых красителей меньше, чем в воде или водных растворах, но и соотношение между подвижностями компонентов в этом случае совсем иное. Эти особенности метода еще не до конца изучены. Поскольку рассматриваемый метод имеет важное практическое значение, различные проблемы создаваемой в настоящее время теории электрофореза в пористых и гелеобразных средах п разнообразные методы его использования являются предметом многих научных трудов. Некоторое представление о них читатель может получить из монографии [6 1. [c.158]

    Из данных о скорости передвижения коллоидных частиц при электрофорезе можно оценить величину их заряда. Получаемые по этому и по друг методам значения в общем хорошо согласуются. Это указывает прежде всего на то, что заряд большинства коллоидных частиц значительно больше, чем у отдельных ионов. С увеличением размеров частиц возрастает обычно и их заряд если при диаметре частицы в 1 нм заряд составляет 2—3 единицы элементарного количества электричества (равного заряду электрона), то для частиц с диаметром 100 нм заряд увеличивается до сотеи и тысяч таких единиц. При всей громадности этой величины по сравнению с числом образующих коллоидную частицу атомов или молекул она все же очень мала. Поэтому при электрофорезе переносится гораздо больше вещества, чем то отвечало бы закону электролиза. [c.334]

    Наряду с КЗЭ, при котором удается осуществить разделение только за счет разницы в подвижности, и который в настоящее время представляет собой наиболее распространенный метод, выделяют также капиллярный гель электрофорез (КГЭ) с капилляром, заполненным гелем. При этом на электрофоретическую миграцию молекул оказывает влияние матрица геля, и поэтому достигается селективное разделение молекул по размерам. Незаряженные молекулы можно разделять с помощью мицеллярной электрокинетической хроматографии (МЭКХ). В данном случае к буферу добавляется детергент, и нейтральные молекулы распределяются между буфером и мицеллами в соответствии с их гидрофобностью. Разделение основано на подвижности мицелл, заряженных в большинстве случаев отрицательно. Поскольку в основе разделения лежит процесс распределения, можно с полным основанием говорить о хроматографическом методе. При изоэлектрической фокусировке (ИЭФ) происходит разделение в градиенте pH, формируемом добавлением амфолита к буферу в электрическом поле. Небольшое распространение получила пока электрохроматография (ЭХ), при которой применяется стационарная среда ВЭЖХ, а течение эдюента и перенос пробы происходит только за счет электроосмотического потока. В качестве самой старой капиллярной техники следует упомянуть изотахофорез (ИТФ), который в настоящее время вновь приобрел значение для концентрирования проб в КЭ. [c.7]

    Противоточным распределением при 600 переносах в системе метанол—хлороформ—боратный буфер pH 8,2 (2 2 1) показано, что микогептин представляет собой смесь двух геп-таеновых компонентов с коэффициентами распределения 2,3 и 3,7 в соотношении 1 4 соответственно (Этингов и др., 1973). Методом дискового электрофореза микогептин был разделен на три компонента — с RsO,4 0,58 и 0,98 (Голубева и др.,. [c.73]


Смотреть страницы где упоминается термин Электрофорез методом переноса: [c.88]    [c.185]    [c.342]    [c.106]    [c.197]    [c.207]    [c.207]    [c.305]    [c.350]    [c.80]    [c.20]    [c.100]   
Химия коллоидных и аморфных веществ (1948) -- [ c.204 ]




ПОИСК





Смотрите так же термины и статьи:

Переноса метод

Электрофорез



© 2025 chem21.info Реклама на сайте