Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Лимонная кислота, применение ее при

    Для температуры раствора композиций 80 С и повышенных концентраций компонентов в качестве ингибитора был использован три-этаноламин (табл. 12-3). При разработке технологии ускоренной химической очистки небольшого прямоточного котла среднего давления, имевшего значительные железоокисные отложения, проверялась возможность применения композиции с концентрациями компонентов 30 г/кг трилона Б и 5— 15 г/кг лимонной кислоты. Введение 6 г/кг триэтаноламина в эти растворы позволяло снизить скорость коррозии стали до 2,0 г/(м -ч) при достаточно высоком эффекте очистки, поверхности труб от отложений. [c.113]


    Применение спорового материала упрощает технологический процесс, позволяет более полно механизировать его и сократить площадь цеха чистой культуры. Централизованное производство спорового материала для группы предприятий, работающих с данным штаммом гриба, выгодно создать в одном специализированном цехе чистой культуры. Положительный опыт подобной организации имеется в производстве лимонной кислоты методом микробного синтеза. [c.153]

    Рассмотренные три способа не могут дать удовлетворительного результата, если ионы очень мало различаются по свойствам и поглощаются ионитом почти одинаково. В этом случае эффективного разделения можно достичь, применяя метод ионообменной хроматографии с комплексообразователем, дающим с разделяемыми ионами комплексные соединения различной прочности. -Рассмотрим суть этого метода на примере разделения ионов редкоземельных элементов с применением лимонной кислоты в качестве комплексообразователя. Разделяемым катионам дают поглотиться в верхней части катионитовой колонки (сульфокатионит в ЫН4- или Н-формах). Затем через колонку пропускают растворы нитратного буферного раствора (лимонная кислота + гидроксид аммония), имеющие разные pH. При этом поглощаемые катионы образуют нитратные комплексные отрицательно заряженные анионы, прочность которых (и, следовательно, вымывание из катионитовой колонки) определяется pH и концентрацией цитратного буферного раствора. Так создаются условия для дифференциального вымывания поглощенных катионов. Чем прочнее образующийся комплексный анион, тем легче вымывается катион из колонки. [c.690]

    Применение растворов перманганата калия и щавелевой кислоты для целей дезактивации (см. 15-3 и 15-4), неблагоприятное в отношении больших расходов сбросных вод, вызывалось относительно невысокими температурами растворов (60—80°С), при которых эффективность использования комплексонов и композиций с ними оказывается невысокой. При повышении температуры раствора эффективность комплексонной очистки резко возрастает (см. гл. 7), а использование композиций с органическими кислотами позволяет переводить в раствор как двухвалентное, так и трехвалентное железо (см. гл. 12). В связи с этим после стендовых исследований была осуществлена опытная промышленная дезактивация с использованием трилона Б и лимонной кислоты при включенной активной зоне с поддержанием постоянной температуры раствора. [c.166]

    Лимонная кислота применяется в качестве добавки к. 1гимонадам, фруктовым конфетам и фармацевтическим препаратам, например мигренину [цитрамону], а также как заменитель пищевого уксуса основное применение она находит в цветном печатании в качестве добавки к растворам красителей. [c.413]


    Во всех трех случаях выдерживались одинаковые условия ввода пробы, и все условия разделения, за исключением буферных ионов, поддерживались одинаковыми. Ясно видно, что в случае применения в качестве буфера лимонной кислоты получается лучшее разрешение и, как следствие, более высокая эффективность разделения. Это приводит также к большей чувствительности системы. Этот пример показывает, что и при низких значениях а путем улучшения эффективности можно достичь достаточного хорошего разрешения анализируемых веществ. [c.94]

    В качестве окислителя широкое применение получил перманганат калия. Участки ткани с пигментными пятнами (в том числе, чернильными) смачивают 1%-м раствором перманганата калия, подкисленным ортофосфорной кислотой (03%), после чего обрабатывают 5 %-м раствором тиосульфата натрия. Для удаления пятен оксида марганца (IV) применяют растворы щавелевой и лимонной кислот. Характерно, что отбеливание в растворах перманганата калия и лимонной кислоты оказывает минимальное разрушающее воздействие на волокна. [c.224]

    Таким образом, в результате применения метода корреляции к опытным данным мы получили возможность установить характер и степень влияния количества серы, фосфора и меди, содержащихся в стали, на коррозию последней в растворе лимонной кислоты. [c.702]

    С соответствующими солями щелочных металлов и аммония соли трехвалентного железа часто образуют двойные соединения, примером которых могут служить железные квасцы общей формулы M[Pe(S04)2] I2H2O. Особенно характерно комплексообразование для солей многих слабых кислот. Например, от H N производится комплексная железосинеродистая кислота— Нз[Ре(СЫ)б], из солей которой наиболее обычен хорошо растворимый в воде феррицианид калия — Кз[Ре(СЫ)б] ( красная кровяная соль ). Легко образуются также растворимые в воде комплексные соединения трехвалентного железа и многих органических вещесте. На этом основано, в частности, применение лимонной кислоты для удаления с материи пятен от ржавчины. [c.441]

    Б. И. Набиванец [219] разработал методику определения молибдена в вольфрамовом ангидриде с применением тиомочевины (с добавкой меди) в качестве наиболее пригодного восстановителя. Для удержания вольфрама в растворе прибавляют лимонную кислоту. [c.216]

    Эффективность разделения можно повысить с помощью ионообменной бумаги, полученной окислением целлюлозы окислами азота [137] достигнуто четкое разделение Gr(II), Fe(III), Gu(I), Ni(II) и Mn(II) в ацетатном растворе с pH 1,4. Омесь элементов — щелочные и щелочноземельные металлы, Си, Ni, Со, Fe, Pb, Zn, r, Mn, Al, d, Bi, Sn, Sb, As, Ag, Hg — разделяют электрофорезом в тонком слое, состоящем из смеси очищенного силикагеля и крахмала, с применением растворов лимонной кислоты в качестве электролита [435]. На бумаге Ватман № 1 в 0,1 Af растворе цитрата аммония при Градиенте потенциала 7 в/см осуществлено разделение Сг(П1), r(VI), Mo(VI), W(VI) [623]. В 0,1 М K l при напряжении 1000—1500 в получают четкое разделение ионов Сг(1П) и r(VI) [c.153]

    Если содержание никеля ниже 0,5%, может быть применен фотометрический метод (см. стр. 71 и 142) при условии, что образец растворяют в нагретой смеси 5 г гидросульфата калия и 3 мл серной кислоты, а перед нейтрализацией раствором аммиака добавляют 15 мл раствора лимонной кислоты. [c.198]

    Лимонная кислота употребляется как средство, делающее ногти блестящими, гладкими и розовыми (ногти натирают 8 -10%-ным раствором лимонной кислоты). При нечастом употреблении такое средство для ногтей безвредно и дает хорошие результаты. Частое же применение вызывает размягчение ногтей. [c.60]

    Рекомендуется применение смеси 10 мл 1 М раствора лимонной кислоты, 10 мл 1 М уксусной кислоты, 22 мл 1 М этилендиаминтетрауксусной кислоты я 2 М раствора КС до 250 мл. Начальное значение pH этой жидкости (рН 8) устанавливают добавлением КОН. К 2 мл смеси добавляют 0,2 мл анализируемого приблизительно 10 —М раствора М , Са, Мп, N1, Сс1 между концентрацией этих катионов и pH полученного раствора наблюдается линейная зависимость, позволяющая найти концентрацию катионов [12]. [c.19]

    Ионообменное разделение редкоземельных элементов на смоле кальцит HOR с применением 0,1%-ного раствора смеси лимонной кислоты и цитрата аммония [1947]. [c.319]

    Для того чтобы максимально сместить равновесие в сторону об разования сложного эфира, одно из исходных веществ (обычно спирт) применяют в избытке или один из получающихся продуктов (воду удаляют азеотропной перегонкой, а растворитель (бензол или толуол) возвращают в реакционную смесь при помощи ловушки Дина— Старка [7, 8]. Другими методами удаления воды могут служить следующие азеотропная перегонка в аппарате Сокслета, в-патрон которого помещают осушитель, например сульфат магния [9], или химический способ, заключающийся в реакции с диметилаце-талем ацетона, приводящей к образованию ацетона и метилового спирта [10]. Азеотропная перегонка при помощи аппарата Дина — Старка — лучший метод получения сложных эфиров, особенно эфиров высококипящих спиртов. Применение метилового спирта при этом представляет трудности вследствие его летучести. В этом случае используют специальную барботажную колонну для удаления промежуточных фракций, содержащих воду [И]. Однако в тех случаях, когда большие количества серной кислоты не оказывают влияния на карбоновую кислоту, из которой получают эфир, эту кислоту, метиловый спирт и серную кислоту просто можно кипятить-с обратным холодильником, а образующийся метиловый эфир экстрагировать толуолом по методу Клостергарда, предназначенному для получения этиловых эфиров, таких, как триэтиловый эфир-лимонной кислоты [12]. Разработан простой полумикрометод, похожий на приведенный выше, при котором метиловые эфиры образуются и разделяются так же эффективно, как и прн реакции кислоты с диазометаном (пример б). Наконец, удобным методо получения метиловых эфиров алифатических и ароматических кислот, дающим выходы 87—98%, является кипячение соответствующей кислоты (1 моль), метилового спирта (3 моля) и серной кисло- [c.283]


    Разделяют РЗЭ главным образом на катионитах. Наиболее широко применяют за границей дауэкс-50, амберлит Щ-120, в СССР КУ-2, СДВ и др. Они содержат активную группировку ЗОдН, в которой водород способен к обмену на любой катион. В качестве комплексообразователей (элюантов) испытывалось большое число органических производных, относящихся к различным классам соединений карбоновые оксикислоты (лимонная, молочная, а-оксимасляная), аминокислоты (аминоуксусная), аминополикислоты (этилендиаминтетрауксусная, нитрилтриуксусная), сложные кетоны (теноилфторацетон) и др. Один из первых комплексообразователей, примененных в полупромышленном масштабе в качестве элюанта, была лимонная кислота. [c.119]

    Элюирование лимонной кислотой. Применявшиеся вначале для разделения малых количеств РЗЭ 5%-ные растворы лимонной кислоты при pH 3 для разделения больших количеств РЗЭ оказались неприемлемыми, так как большая часть вводимой кислоты (90—95%) расходовалась непроизводительно в связи с небольшой устойчивостью комплексов. Концентрация РЗЭ в выходящих из колонок растворах (элюатах) не превышала 1 г/л. Применение растворов лимонной кислоты и ее натриевых и аммониевых солей с pH 5—8 и концентрацией 0,1 % дало возможность повысить степень использования комплексообразователя и увеличить концентрацию РЗЭ в элюатах. Разделение производилось на катионитах в ЫН4" - и Н -формах. Процесс схематично можно представить следующим образом [87]. При пропускании раствора через сорбционную колонку со смолой в ЫН4 -форме сорби- [c.119]

    Для изготовления химической аппаратуры чаще всего применяют технический алюминий с чистотой порядка 99,5%. Из алюминия более высокой степени чистоты (99,90% и выше) изготавливают только аппараты и реакторы, контактирующие с концентрированной азотной кислотой. Его устойчивость в сухом броме, яблочной, борной и лимонной кислотах и в других средах выше, чем у технического алюминия, но практически это различие незначительно. В щавелевой, фосфорной и уксусной кислотах алюминий марок АОО, АДОО, АДО и АД1 имеет сходную коррозионную устойчивость. При получении уксусной, абиетиновой, масляной, капроновой и каприловой кислот, эти-ленбромида, амилового, метилового, этилового и бутилового спиртов, анизола, циклогексанона, крезола, фенола и др, в реакторах из алюминия необходимо иметь в виду, что он устойчив в пассивном состоянии только лишь при минимальном содержании влаги в среде. Применение алюминиевых сплавов, содержащих медь, для изготовления аппаратуры для производства уксусной кислоты недопустимо. Кремнисто-алюминиевые сплавы (силумины) пригодны для изготовления литых деталей насосов, работающих в среде уксусной кислоты. [c.125]

    Свойства и применение. Стали с Мо обладают лучшей стойкостью к питтинговой коррозии в хлоридсодержащих средах, чем стали типа 18—10, являются стойким материалом в органических кислотах в 50%-иой лимонной кислоте при температуре кипения, в 10%-ной муравьиной кислоте до 100°С, 5%-, 10%- и 25%-иой серной кислоте до 75°С, в 50%-иой уксусной кислоте до 100 °С и в 80%-ной —до 80 °С, 25%-ной фосфорной кислоте прн температуре кипения и в 40%-ной до 100°С. Стали 08(10)Х17Н13М2(3)Т широко применяются для изготовления аппаратуры производства карбамида (колонны ректификации, сепараторы, подогреватели, промывная колонна, трубопроводы и др.), капролактама (ректификационные колонны, холо-дпльники-конденсаторы, колонны отгоики сероводорода, трубопроводы, экстракторы, иасосы и др.), серной кислоты, нитрофоски, экстракционной фосфорной кислоты. [c.321]

    Из известных мнопих комплексообразующих веществ практическое применение получили этилендиаминтетрауксусная кислота (ЭДТА) и ее натриевые соли, в частности двунатриввая соль — три-ло н Б нитрилтриуксусная кислота (НТК, трилон А), лимонная кислота, щавелевая кислота и др. [c.17]

    Применение для очисток относительно высоких концентраций лимонной кислоты требует добавления ингибиторов. Разработанная для этих случаев смесь ингибиторов 0,1% ОП-7 (ОП-10) с 0,01—0,02% каптакса надежно защищает котельные стали различных марок (Сталь 20, 12ХМФ, 12Х2МФСР, 16ГНМ и др.) от коррозии. В условиях очистки скорость их коррозии [c.9]

    Многими зарубежными работами 1960—1965 гг. как для эксплуатационных, так и особенно предпусковых очисток рекомендовалось применение лимонной кислоты и моиоцитрата аммония. Стадия промывки с использованием лимонной кислоты часто рекомендуется как завершающая после солянокислот-кой очистки. В мировой практике в настоящее время все еще достаточно широко используется лимонная кислота и как Основной реагент для химической очистки. Проводятся изыскания эффективных окислителей для удаления меди цитратами аммония и ингибиторов коррозии стали при использовании лимонной кислоты и ее солей. [c.11]

    Значительное развитие способов химических очисток в настоящее время отмечается в США. Большое внимание при проведении предпусковых промывок уделяется выбору реагентов для предварительного щелочения в зависимости от характера примененной защиты труб. Оптимальный состав подбирается опытным путем, но обычно используется 0,5—1,0%-ный раствор щелочи, содержащей 0,57о КазР04 н 0,1 —0,2 % поверхностно- активных веществ (ПАВ). Щелочение выполняется при температурах 65—93°С с продолжительностью 6—8 ч. Кислотная стадия очистки осуществляется минеральными или органическими кислотами или раствором комплексонов. Во всех случаях полезным считается добавление ПАВ и обязательным ингибирование. Из минеральных кислот чаще применяют соляную кислоту, изредка—серную и фосфорную. После минеральной кислоты котел промывают 0,1 — 0,5%-ным раствором лимонной кислоты, а затем проводится нейтрализация или повторное щелочение. [c.12]

    Большие преимущества композиций на основе комплексонов способствовали их применению не только для о чистки котлов, но и для других элементов тепловых электростанций. К ним относятся прежде всего конденсаторы турбин (см. 12-6), а также некоторые вспомогательные системы, в частности мас-лосистемы блоков. Композиции трилона Б с лимонной кислотой были использованы, например, для предпусковой очистки маслосистем на одном блоке 300 МВт Рефтинской ГРЭС и на четырех блоках 200 МВт Сургутской ГРЭС. [c.118]

    В гл. 11 упоминались неудачи в очистках котлов средних давлений с применением монорастворов комплексонов, если, как это часто бывает для таких установок, значение pH питательной воды велико. В связи с этим была организована проверка возможности использования для этой цели композиции на основе комплексона, так как при этом открывается возможность регулирования значения pH питательной воды. Такая работа была проведена на котле ПК-7 на ТЭЦ Боткинского машиностроительного завода. Были сопоставлены четыре режима, а именно I — фосфатирование II—дозировка трилона Б с концентрацией 5 мг/кг в питательной воде III — дозировка трилона Б с концентрацией 55 мг/кг в питательной воде IV — дозировка трилона Б с концентрацией 33 мг/кг и лимонной кислоты 2,2 мг/кг в питательной воде. [c.124]

    В связи с большой ответственностью оборудования АЭС, а также с относительно малым еще их распространением считается допустимым применение для их предпусковых очисток моноаммонийцитрата. Начинают находить распространение для этой цели и композиции комплексонов с лимонной кислотой. [c.148]

    В зубные пасты обязательно вводят отдушки и вкусовые компоненты. Наиболее распространены отдушки мятного и коричного характера. Мятная отдушка обеспечивается применением ментола, мятных масеЛ — перечной или кудрявой мяты, а также различных модификаторов, В отдушках применяют метилсалицилат, гвоздичное масло, эвкалиптол, коричный альдегид. В качестве подслащивающего компонента чаще всего используют сахарин и некоторые его производные. За рубежом для этой цели рекомендуют сахарат натрия и дульцин вместе с небольшим количеством хлорида натрия или лимонной кислоты. Недавно стали применять натриевую соль цикламеновой кислоты, которая по вкусу напоминает сахар. [c.106]

    Пршибил и др. [3J7] разработали метод осаждения MgNH4P04- BHjO в присутствии катионов III и IV аналитических групп, а также урана, бериллия, титана, тория, редкоземельных элементов и ш елочноземельных металлов, связываемых комплексоном и тироном неосаждающиеся соединения. Вместо тирона другие авторы применяют лимонную кислоту [792]. Фосфор определяют по количеству магния, не вошедшего в реакцию или содержащегося в осадке магнийаммонийфосфата. Для отделения Fe + применяют купферон [668, 669] с последующей экстракцией образующихся комплексов эфиром. Затем в водном растворе определяют РО4 в присутствии молочной кислоты, прибавляя комп-лексон III и титруя его избыток сульфатом магния (в качестве индикатора при этом применяют эриохром черный Т или смесь его с тг-нитрозодиметиламином [119]) до перехода окраски из изумрудно-зеленой красную. Косвенный комнлексонометриче-ский метод с применением солей магния был изучен и усовершенствован многими авторами [119, 546, 661, 712, 805, 902, 1136, 1137]. Его применяют для определения фосфора в различных [c.38]

    Для фотометрического определения Лазаревым [273] был применен сульфит натрия. Максимум светопоглощеиия растворов окрашенного комплекса расположен в области 400—420 нм, 8420 =1,1-10 . Оптимальным условиям образования комплекса соответствуют следующие концентрации реагентов 4N HG1, 0,04 М NagSOg, 0,22 М Sn lj. Для предотвращения выпадения олова в осадок добавляют лимонную кислоту (0,04 М). Развитие окраски заканчивается за 15—20мин. Закон Бера соблюдается при концентрации 8 мкг Пе/жл. Ошибка определения достигает 7%. [c.98]

    Панчев [480] определял 10 % Аи в горных породах и рудах побле отделения золота от спутников цементацией на медном порошке в присутствии комплексона III и лимонной кислоты. Реагент применен [Ц22] для определения и-10 % Аи в серпентините и других объектах. Сопутствующие ионы маскируют комплексоном III и монометиловыМ эфиром этиленгликоля. В условиях определения мешает Н (П), поэтому навеску прокаливают при 550-650° С. [c.153]

    Эффективно разделение бериллия и сопутствующих элементов хроматографическими методами, в которых используется различная устойчивость комплексных соединений этих элементов. В литературе имеются сведения о применении комплексона III [204, 612—615], щавелевой кислоты [204, 608, 616—617], сульфосалициловой кислоты [486, 618], карбонатов [619, 620], лимонной кислоты [621, 621а] и других комплексообразующих агентов [609 для отделения бериллия от алюминия, железа, щелочноземельных металлов, урана и др. [c.139]

    Метод определения бериллия, основанный на фотометриро-вании комплекса бериллия с эриохромцианином R (А. = 512 ммк, pH 9,8), был применен к анализу сталей и железа. При содержании 0,1% бериллия в стали можно не отделять железо и другие элементы, а маскировать их с комплексоном III, цианидом калия и лимонной кислотой. Однако при содержаниях бериллия < 0,01 % чувствительность метода и результаты получаются неудовлетворительными. [c.183]

    Самая лучшая форма применения лимонной кислоты — лимонный сок, лучше свежевыжатый и не доведенный до высокой температуры нагреваниед . Лимонный сок содержит около 8% лимонной кислоты, около 1% яблочной кислоты, различные слизистые вещества, эфирное масло, витамины (главным образом витамин С) и воду. Свежий лимонный сок действует значительно эффективнее всех других лимонных препаратов. Этим. [c.59]

    Для этого к свободному, по возможности, от кислот раствору хлорида галлия добавляют винную кислоту (для предотвращения гидролиза галлия), раствор гуммиарабика (для повышения стабильности колл.оидного раствора), ацетатный буферный раствор (pH 3—4), раствор реагента и воду. Затем в те ние НС более 30 мин. после прибавления реагента производят измерение на колориметре с применением синего светофильтра. Для чистых растворов, содержащих от 10 до 132 мкг галлия, получаются удовлепворительные результаты. Алюминий не мешает до концентрации его 30 мг/ 0 мл. Большие количества алюминия и нейтральных солей мешают определению, так как вследствие солевого эффекта увеличивается растворимость частиц, либо происходит изменение их величины. В этом случае необходимо предварительно отделять галлий соосаждением с А1(0Н)з, либо экстракцией эфиром. Определению мешает также лимонная кислота. [c.153]

    Применение кондуктометрического метода в производстве лимонной кислоты ферментацией сахарной мелассы с помощью Aspergillus niger [2372]. [c.324]


Смотреть страницы где упоминается термин Лимонная кислота, применение ее при: [c.21]    [c.26]    [c.346]    [c.17]    [c.9]    [c.111]    [c.126]    [c.20]    [c.105]    [c.107]    [c.259]    [c.226]    [c.124]    [c.226]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Лимонен

Лимонит

Лимонная кислота

Лимонная кислота в лимонах



© 2024 chem21.info Реклама на сайте