Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Активная, общая, свободная кислотность воды

    Общая кислотность определяется количеством титрованного раствора сильного основания (мг-экв/л), которое необходимо для полной нейтрализации исследуемого раствора по достижении pH 8,3. Если исследуемый раствор (вода) имеет рН>8,3, то кислотность принимается равной нулю. Кислотность воды определяют титрованием пробы исследуемой воды стандартным раствором гидроксида или карбоната натрия. Точка эквивалентности, соответствующая окончанию реакции нейтрализации, определяется визуально по изменению окраски индикатора. При определении свободной кислотности применяется индикатор метиловый оранжевый, а общей кислотности — фенолфталеин. Достижение точки эквивалентности при взаимодействии основания с сильными кислотами может быть зафиксировано любым из кислотно-щелочных индикаторов, имеющих интервал перехода окраски от 4 до 9, так как уже от одной лишней капли основания при титровании исследуемого раствора резко возрастает pH. Активная реакция среды раствора по окончании реакции будет нейтральной, так как образующаяся соль не подвергается гидролизу. При проведении реакции нейтрализации слабой кислоты сильным основанием активная реакция среды раствора в точке эквивалентности будет щелочной, так как образующаяся соль подвергается гидролизу. При проведении реакции нейтрализации в присутствии индикатора фенолфталеина в точке эквивалентности (pH 8,3) могут образовываться не только средние, но и кислые соли. Так, при определении общей кислотности природных вод, кислотность которых обусловлена свободной угольной кислотой, реакция нейтрализации гидроксидом натрия заканчивается образованием гидрокарбоната натрия С02-ЬМа0Нч а ЫаНС0з. Гид- [c.45]


    Активная, общая, свободная кислотность воды [c.44]

    Обработка палыгорскита известью, произведенная по первому способу, приводит к уменьшению тепловых эффектов, выделяющихся при смачивании образцов водой. Все образцы откачивали равное время при одинаковых условиях (табл. 7). Уменьшение теплот смачивания палыгорскита, обработанного известью, происходит за счет действия двух факторов — уменьшения доступной для адсорбции поверхности минерала (агрегация в пачки, частичное смыкание цеолитных каналов) и изменения природы поверхности минерала в результате взаимодействия с известью. Известно, что поверхность палыгорскита характеризуется энергетической гетерогенностью [321, 353, 354]. Неоднородность поверхности связана с наличием активных центров различной природы — октаэдрические катионы на боковых стенках каналов, обменные катионы, атомы кислорода на внутренней поверхности каналов и на внешней поверхнос-сти игольчатых частичек минерала, гидроксильные группы, специфика геометрии самой поверхности палыгорскита. Наиболее вероятно, что многие из этих адсорбционных центров, особенно кислотного характера, вначале поверхностного взаимодействия с гидроокисью кальция блокируются. При этом новообразования обладают меньшей энергетической активностью. Такой вывод кажется вполне закономерным, если учесть падение интенсивности эндоэффектов на термограммах палыгорскита обработанного известью. Эндоэффекты 120, 150, 280° и широкий максимум 470—500° появляются на кривых ДТА палыгорскита за счет удаления, соответственно, молекул воды, свободно размещенных в цеолитных каналах молекул воды, адсорбированной на поверхности кристаллов по наружным разорванным связям связанных с октаэдрическими катионами на боковых стенках каналов и постепенного исчезновения структурных гидроксилов [359]. Таким образом, снижение интенсивности перечисленных эндоэффектов, наряду с уменьшением теплот смачивания, свидетельствует о преимущественном взаимодействии Са(0Н)2, прежде всего, по энергетически наиболее выгодным центрам внешней и внутренней поверхности минерала. Очень интересно, что, несмотря на снижение энергетической активности поверхности палыгорскита, в результате частичного блокирования первичных центров неоднородности поверхности, общее количество связанной воды не уменьшается и выделение ее идет за счет дегидратации гидратных новообразований. Этот вывод можно сделать на основании сравнения потерь при прокаливании обработанных и не обработанных известью образцов и сопоставления нх с характером кривых ДТА. Как видно из табл. 7, потери веса в интервале 80—400° С у обработанных известью образцов не уменьшаются, а интенсивность присущих палыгорскиту эндоэффектов понижается. Общая протяженность [c.134]


    На стадии ацилирования происходит нуклеофильная атака карбонильного углерода субстрата обобщенным нуклеофилом активного центра 8ег-195... Н1з-57... Азр-102. В результате ацилирования активного центра происходит поворот остатка 8ег-195 вокруг С —Ср-связей, что сопровождается перемещением атома кислорода на- 2,5А. При этом имидазольная группа Н1з-57 перемещается в сторону растворителя [18]. В результате имидазольная группа Н13-57, будучи включенной в свободном ферменте (и, по-видимому, в комплексе Михаэлиса) в водородную связь с 8ег-195 (рис. 31), в ацилферменте предоставляет свой М атом для образования водородной связи с водой (рис. 32). В итоге активированная молекула воды приобретает способность эффективно атаковать карбонильный- углерод субстрата на стадии деацилирования. При этом образуется кислотный продукт гидролиза и регенерируется свободный фермент. Таков в общих чертах химический механизм гидролитического действия химотрипсина. [c.131]

    ЦИИ и было известно (на что многие не обращали внимания), что она представляет собой реакцию общего кислотного катализа. В 1961 г. Баннет [31] решил обе эти проблемы. Он показал, что шкалы кислотности, применяемые к равновесию в водных растворах кислот, зависят в большой мере от изменения активности растворителя — воды и, следовательно, от количества связанной воды, включая сольватационную, которое высвобождается или связывается с растворенным веществом в результате переноса протона. Высвобождение связанной воды более благоприятствует течению реакций при высокой кислотности, когда раствор менее богат свободными молекулами растворителя — воды. Шкала ко была построена для выражения равновесия переноса протона от сильно гидрофильных молекул воды к умеренно гидрофильным органическим азотистым основаниям. В этих процессах некоторое количество связанной воды высвобождается, и это служит главной причиной того, почему шкала Ао с ростом кислотности растет более круто, чем шкала [Н+]. Шкала прекрасно отражает равновесный перенос протона к умеренно гидрофильным органическим азотистым и органическим кислородным основаниям. Однако, когда высвобождается слишком большое количество связанной воды, что бывает при переносе протона от воды к гидрофобным углеродным основаниям, тогда функция к становится неприменимой. В этом случае для того, чтобы описать равновесие переноса протона к углероду, нужна функция, более круто растущая, чем функция к . Баннет пришел к заключению, с которым следует согласиться, что функция Гаммета ко иногда все же дает приближенное описание псевдоравповесного частичного переноса протона и связанного с этим переносом частичного высвобождения воды, протекающих при образовании переходного состояния переноса протона к углероду. [c.790]

    Предыдущее обсуждение показало, что на пути к созданию шкалы pH для неводного растворителя стоят два главных препятствия. Они имеют место как для амфотерных и смешанных (водоподобных) растворителей, так и для апротонных (инертных) растворителей. Эти препятствия — следствие отсутствия прямого и надежного метода разделения свободной энергии переноса электролита на ионные составляющие, без которого не может быть определен эффект среды для иона водорода. Эти трудности лежат в основе главного препятствия на пути создания общей шкалы кислотности для всех растворителей. Подобное ограничение не позволяет также создать теоретически удовлетворительную шкалу активностей иона водорода даже для одного растворителя, и вода в этом отношении не является исключением. [c.339]

    Эксперименты Эйгена [74] устанавливают верхний предел скорости реакций, протекающих по механизму общего кислотноосновного катализа. Например, из табл. 1-5 следует, что скорость процессов общего основного катализа с участием имид-азола и воды (реакций, имеющих больщое значение при физиологических значениях pH) не может превыщать величину 2,5-10 се/с . Очевидно, такой же предел характерен н для ферментативных реакций, включающих аналогичные каталитические стадии. Следует иметь в виду, что, хотя скорость переноса протона возрастает при переходе к основным катализаторам с большим значением рк а (таки.м, как фенолят-ион и ион аммония), увеличение р/(а приводит к снижению концентрации каталитически активного свободного основания при нейтральных pH, в результате чего наблюдается общее снижение скорости реакции. Следовательно, имидазол остается наиболее эффективным обобщенным основанием в физиологической области pH. Были измерены также константы скоростей переноса протона между органическими кислотно-основными парами [74], которые [c.45]

    Располагая такими функциями кислотности, с помощью которых можно количественно изучить общую предравновесную стадию обоих механизмов. Яте и Макклелланд смогли выявить окончательные особенности лимитирующих скорость вторых стадий этих реакций. Эти вторые стадии отличаются по числу участвующих в них молекул воды, и поэтому необходимо определить. как изменяются скорости этих индивидуальных стадий с изменением активности воды при увеличении концентрации кислоты. Для этого нужно построить зависимость log ki от —Hs или, что то же самое, суммы log ki тНд (где т = 0,62) от log анго- При условии, что равновесное содержание сопряженной эфиру кислоты мало, сумма log /ii - -тНо пропорциональна суммарной свободной энергии активации всего процесса гидролиза и меньше свободной энергии предравновесной стадии. [c.951]



Смотреть страницы где упоминается термин Активная, общая, свободная кислотность воды: [c.144]    [c.45]    [c.11]   
Смотреть главы в:

Химия и микробиология воды -> Активная, общая, свободная кислотность воды




ПОИСК





Смотрите так же термины и статьи:

Вода свободная

Кислотность активная и общая

Кислотность и активность

Общая вода



© 2025 chem21.info Реклама на сайте