Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Целлюлоза взаимодействие с основаниями

    Для получения эфиров целлюлозы и ненасыщенных органических кислот можно использовать обычные методы, применяемые для синтеза сложных эфиров целлюлозы взаимодействие с хлорангидридами кислот в среде различных оснований, с ангидридами кислот в присутствии или в отсутствие катализатора, переэтерификация эфира целлюлозы соответствующей кислотой, непосредственное действие кислот на целлюлозу в присутствии катализаторов, нуклеофильное замещение остатков некоторых кислот в эфирах целлюлозы при действии солей непредельных кислот. Необходимо отметить, что при синтезе непредельных эфиров целлюлозы возникают специфические затруднения, связанные со способностью ненасыщенных кислот к полимеризации. [c.349]


    В целлюлозе между макромолекулами действуют два вида взаимодействий силы Ван-дер-Ваальса и водородные связи. Силы Ван-дер-Ваальса в отличие от валентных сил относят к дальнодействующим (см. 5.2). Большое число гидроксильных групп в целлюлозе обусловливает высокую суммарную энергию водородных связей. Водородные связи между ОН-группами образуются при сближении их атомов кислорода на расстояние 0,25...0,28 нм. Считают, что энергия Н-связи у целлюлозы примерно такая же, как у спиртов и составляет в среднем около 28 кДж/моль. Эта энергия зависит от расстояния между ОН-группами. При расстояниях около 0,27...0,28 нм образуются слабые связи, а при расстояниях порядка 0,25 нм - сильные . Существование различающихся по прочности межмолекулярных Н-связей объясняет особенности набухания и растворения целлюлозы - слабое набухание в воде, более сильное в щелочах и возможность неограниченного набухания (растворения) в комплексных основаниях и других растворителях целлюлозы. [c.233]

    По мнению большинства исследователей, все комплексные растворители вступают с целлюлозой в химическое взаимодействие, однако механизмы химических реакций, приводящих к растворению целлюлозы, как и при взаимодействии целлюлозы с гидроксидами щелочных металлов (см 18.1), полностью еще не выяснены. Первоначально полагали, что медно-аммиачный реактив и другие комплексные основания лишь адсорбируются целлюлозой, и растворение целлюлозы представляет собой чисто физико-химический процесс. Затем были предложены теории химического взаимодействия с комплексными основаниями. Ниже при изображении схем химического взаимодействия целлюлозы с растворителями используется их упрощенное написание на примере одного звена (степень полимеризации целлюлозы п опускается) в соответствии с дробным поведением. [c.557]

    Все эти тенденции, естественно, необходимо было учесть при подготовке данной книги. По сравнению с изданной в 1953 г. книгой 3. А. Роговина и Н. Н. Шорыгиной Химия целлюлозы и ее спутников в этой монографии сокращены разделы, посвященные вопросам взаимодействия целлюлозы с основаниями, гидролизу и окислению целлюлозы, и в известной степени разделы по синтезу и исследованию свойств сложных и простых эфиров целлюлозы. Одновременно введены новые разделы, отражающие современные направления развития химии целлюлозы. Это — новые методы превращений, обеспечивающие введение в макромолекулу целлюлозы разнообразных функциональных групп и, особенно, синтез и исследование свойств привитых сополимеров целлюлозы с различными синтетическими полимерами. Во избежание чрезмерного увеличения объема монографии исключен ряд разделов, относящихся к выделению целлюлозы из растительных материалов, а также все разделы, посвященные спутникам целлюлозы — лигнину и полиозам, которые требуют освещения в специальных монографиях. [c.10]


    Особенности надмолекулярной структуры целлюлозы и сильное межмолекулярное взаимодействие затрудняют получение высокозамещенных эфиров. Получить сложный эфир целлюлозы действием органической кислоты в присутствии кислотного катализатора удается лишь в случае эфиров муравьиной кислоты (формиатов). Действием ангидридов кислот можно получать только эфиры низших жирных кислот - ацетаты, пропионаты, бутираты. Эфиры целлюлозы и высших жирных кислот (например, стеариновой), а также ароматических, дикарбоновых и других кислот удается получить лишь при действии на целлюлозу соответствующих хлорангидридов в присутствии основания (пиридина, других аминов и т.п.), а также методом переэтерификации. [c.602]

    ВЗАИМОДЕЙСТВИЕ ЦЕЛЛЮЛОЗЫ С ОСНОВАНИЯМИ [c.311]

    Методами светорассеяния, вискозиметрии изучены конформационные и термодинамические характеристики ацетата целлюлозы в разбавленных неводных растворителях. Газохроматографическим методом определены термодинамические свойства полимера при сорбции им бесконечно малого количества растворителя. Выявлено влияние природы растворителя на значения второго ви-риального коэффициента и равновесную жесткость цепи эфира целлюлозы. На основании данных статического и динамического методов выдвинуто предположение о различном механизме взаимодействия низкомолекулярных растворителей в жидком и газообразном состоянии с ацетатом целлюлозы. [c.55]

    Гидроксид натрия (едкий натр, каустическая сода) очень сильное основание — щелочь (А"ь = 5,9). В громадных количествах потребляется самыми разнообразными отраслями промышленности, главные из которых — производство мыл, красок, целлюлозы и др. Получают NaOH либо электролизом водных растворов Na l, либо химическими методами. Из последних наиболее распространен известковый способ. Р его основе лежит реакция взаимодействия раствора карбоната натрия (соды) с гидроксидом кальция (гашеной известью)  [c.533]

    Только путем взаимодействия природных и синтетических каучуков с серой и другими полифункциональными соединениями вулканизация) могут быть получены различные сорта резины и эбонита. Дубление белков, обеспечивающее возможность их технического использования, также основано на химическом взаимодействии белков с альдегидами или другими бифункциональными соединениями. Наконец, к химическим превращениям относится направленная деструкция полимеров, часто применяемая для регулирования молекулярной массы полимеров, перерабатываемых в различных отраслях промышленности. На полном гидролизе целлюлозы основан процесс получения гидролизного спирта. Механическая деструкция полимеров используется в промышленном масштабе для изменения физико-химических свойств полимеров, а также для синтеза сополимеров новых типов. [c.211]

    Применение ионообменных смол. Белки в растворе в зависимости от их состава могут проявлять сродство к специально приготовленным матрицам, к которым они присоединяются и откуда могут отделяться при воздействии соответствующим реактивом. Взаимодействие с веществом матрицы осуществляется через посредство очень специфичного функционального участка молекулы. Эти участки можно поместить на материал-носитель путем прививки радикалов. К таким материалам в первую очередь относятся смолы, разновидности целлюлозы и кремнеземы, которые при прививке становятся ионообменниками. В соответствии с природой прививаемого радикала различают специфические обменники ионов слабых оснований, сильных катионов, ионов слабых кислот и сильных анионов. [c.446]

    Комплексные соединения, представляющие собой продукты взаимодействия целлюлозы с комплексными основаниями, растворы которых служат растворителями целлюлозы (см. 17.2.1). В этих продуктах атомы кислорода гидроксильных групп целлюлозы образуют с металлом -комплексообразователем донорно-акцепторные связи. [c.553]

    Первой из теорий химического взаимодействия была теория Гесса, согласно которой целлюлоза реагирует с медно-аммиачным реактивом и другими комплексными основаниями с образованием алкоголятов. Процесс идет в две стадии. В первой стадии происходит замещение водорода в гидроксильных группах на комплексный катион реактива с образованием ионной связи [c.558]

    Поскольку органические кислоты слабые, сложные эфиры целлюлозы и органических кислот получают действием на целлюлозу ангидридов кислот или смесей ангидридов с кислотами в присутствии кислотного катализатора. Можно также использовать взаимодействие целлюлозы с ангидридом или с хлорангидридом в присутствии основания, например, пиридина. [c.601]


    Теплота взаимодействия между частицами в растворе и в набухшем геле, порядок которой может быть оценен на основании изложенных выше расчетов в десятки малых калорий на моль, очень мала. Этот факт находится, как нам кажется, в противоречии с наличием высокого температурного коэффициента вязкости у органозолей нитроцеллюлозы (и других эфиров целлюлозы). [c.222]

    Проводились также [132] более подробные расчеты, основанные на предположении о том, что наиболее важные вклады в разности суммарной внутримолекулярной энергии [Ет в уравнении (4)] различных вторичных структур целлюлозы обусловлены несвязанными взаимодействиями ( г) между атомами и группами соседних остатков D-глюкопиранозы . При таких расчетах не учитывались вклады, обусловленные разностями напряжений при деформации связей (Ed) и деформации углов между связями ( е), а также вклады торсионных напряжений (Et) и электронных взаимодействий (Ее). Не учитывались также разности энергий водородных связей, сольватации и кристаллической решетки, хотя некоторые из этих факторов оценивались качественно. Эти расчеты позволили установить, что конформация целлобиозы в кристаллическом состоянии, соответствующая значениям [c.145]

    Нетрудно заметить, что поливиниловый спирт ведет себя во многом подобно целлюлозе, которая такл е склонна к аналогичным реакциям, основанным на взаимодействии первичных и вторичных гидроксильных групп с кислотами и спиртами. [c.299]

    Жесткие цепи могут перемещаться только как целое, что при наличии высокой молекулярной массы очень затрудняет их диффузию. Их звенья не могут независимо друг от друга обмениваться местами с молекулами растворителя. Поэтому аморфные линейные полимеры, жесткость цепей которых обусловлена присутствием полярных групп, хорошо набухают в сильнополярных жидкостях, но, как правило, не растворяются в них при обычных температурах. Для растворения очень жестких полимеров необходимо сильное взаимодействие между полимером и растворителем. Например, целлюлоза растворяется в четвертичных аммониевых основаниях, т. е. в жидкостях, с которыми она может образовывать комплексы. [c.276]

    Простые Ц. э. получают взаимодействием целлюлозы с алкилсульфатами, алкилгалогенидами, ди-азоалканами, эфирами ароматич. сульфокислот с 3- и 4-членными гетероциклич. соединениями (окиси этилена и пропилена, этиленимин, -пропиолактон, суль-тоны) с непредельными соединениями, содержащими активированную двойную и тройную связи (акрилонитрил, акриламид, ацетилен) с ониовыма соединениями. Большинство реакций О-алкилирования целлюлозы катализируется основаниями. [c.431]

    С любой желаемой ионообменной характеристикой. Органическая химия представляет большой выбор различных химикалий, пригодных для взаимодействия с целлюлозой нет оснований отказываться использовать для этой цели производные, содержащие сульфги-дрильные группы, липидные группы, антигены и т. д. Ниже описано получение шести различных производных целлюлозы. [c.234]

    Нуклеиновые основания и нуклеозиды можно разделять ТСХ на целлюлозе, используя в качестве элюентов водно-солевые растворы [Bij, Lederer, 1983]. Основную роль в этих случаях играют гидрофобные взаимодействия нуклепновых оснований с целлюлозой и эффект высаливания. [c.496]

    Неоднозначно и влияние воды на свойства и структуру растворителя. В работе [87] на основании анализа значений параметра взаимодействия Флори-Хаггинса для систем моногидрат МММО-вода и безводный NMMO-вода сделано предположение, что наличие воды может оказывать влияние на структурную организацию растворителя, т.е. может изменяться энтропийный фактор системы в целом. Молекулы воды изменяют структуру растворителя, что приводит к возникновению совершенно иного растворителя с другими свойствами. Присутствие молекул воды приводит к ослаблению взаимодействия между молекулами исходного гидрофильного растворителя [88]. Молекулы аминоксидов, по экспериментальным данным [89-91], в большой степени склонны к самоассоциации, что уменьшает растворяющую способность аминоксида. Присутствие воды в небольших количествах (для NMMO максимальная растворяющая способность наблюдается при содержании воды 2-4% [92]) скорее всего уменьшает взаимодействие молекул растворителя друг с другом, так как появляется сильное конкурирующее влияние молекул воды. Высокая эффективность молекул воды в снижении самоассоциации растворителя обусловлена ее высокой диэлектрической проницаемостью чем выше диэлектрическая проницаемость разбавителя, тем быстрее уменьшается степень самоассоциации молекул растворителя и тем быстрее они могут проникнуть в структуру целлюлозы. [c.380]

    На основании данных по сорбции воды целлюлозой, хитином и хитозаном [110] оценена их степень кристалличности, которая составила соответственно 60-70, 60 и 35-40%, т.е. у хитозана степень кристалличности наименьшая. Это подтверждают и данные по энтальпиям взаимодействия указанных полимеров с водой [111], на основании которых можно предполагать, что степень кристалличности уменьшается в ряду целлюлоза > хитин > хитозан. [c.388]

    В процессе варки целлюлозы и полуцеллюлозы древесная ткань подвергается химическому и физическому воздействию. В результате делигнификации и частичного удаления гемицеллюлоз она распадается на отдельные древесные волокна с превращением последних в целлюлозные волокна. При этом ультраструктура клеточной стенки существенно изменяется. Учитьгаая распределение слоев клеточной стенки по массе, необходимо подчеркнуть, что основное количество лигнина присутствует во вторичной стенке. Следовательно, для достижения достаточной степени делигнификации требуется удалить лигнин из всех слоев клеточной стенки. Удаление лигнина из срединной пластинки приводит к ее разрушению и разъединению волокон, а удаление из вторичной стенкн - к ослаблению связей между фибриллами. Фибриллярная структура клеточной стенки позволяет делить, волокна на продольные элементы и связывать их между собой. На этом основан процесс производства бумаги. В результате делигнификации целлюлозные волокна становятся гибкими и эластичными. При последующем размоле целлюлозной массы при подготовке к формованию бумаги происходит фибриллирование клеточньк стенок - расщепление их на фибриллы и последних на более тонкие элементы. На процесс фибриллирования определяющее влияние оказы-вае ультраструктура клеточной стенки. По сравнению с хлопковым волокном волокна древесной целлюлозы фибриллируются значительно легче. При формовании бумаги в процессе удаления воды возникают прочные межволоконные связи за счет трения, механического зацепления фибрилл, а также возникновения межмолекулярных сил взаимодействия, в том числе прочных водородных связей между макромолекулами на поверхностях фибриллированных элементов, и образуется бумажный лист. [c.224]

    СКОЛЬКИХ лет служила материалом для упаковки колонок, и на ней впервые удалось почти полностью разделить энантиомеры. (В 1944 г. было опубликовано сообщение о том, что основание Тре-гера разделено на колонке с лактозой длиной 0,9 м [2].) Разделяющая способность полисахаридов, в частности целлюлозы, была впервые обнаружена при попытке разделить рацемические аминокислоты методом бумажной хроматографии [3—5]. При этом выяснилось, что эти соединения в некоторых случаях дают два пятна на бумажной хроматограмме. Далглищ развил свою теорию трехточечного взаимодействия в 1952 г. на базе данных о бумажной хроматографии рацемических аминокислот [6]. Известны и другие ранние работы по непосредственному разделению энантиомеров аминокислот посредством бумажной хроматографии [7] и тонкослойной хроматографии на целлюлозе (ТСХ) [8]. Все это способствовало использованию целлюлозы и ее производных, а также крахмала и циклодекстринов в хиральной ЖХ. В настоящее время в качестве потенциальных хиральных сорбентов изучается ряд природных полисахаридов. [c.108]

    Если мы попытаемся определить жоличестввайн н качественные результаты взаимодействия между кислотной омесью и целлюлозой, то яа основании большого опытного материала, должны будем коястатаровать,что как качество продукта, ак а количество основного полуфабрика а и асех примесей, являю- [c.92]

    Очень интересна работа [447], в которой в отличие от обычного типа. наполненных систем, где наполнитель вводится в объем полимерной матрицы, исследована I система, в которой иммобилизация полимера, рассматриваемого в качестве наполнйтеля, осуществлялась путем пропитки поверхностного слоя образцов целлюлозы его разбавленными растворами. При этом были взяты несовместимые системы, в результате чего появилась возможность определения свойств связанного поверхностного полимера, отражающих адгезионное взаимодействие. Были исследовану сополимеры стирола и акрилонитрила с бутадиеном.и определены динамические механические свойства исходных и композиционного материалов. На основании данных о температурной зависимости мнимой составляющей комплексного модуля упругости при разных количествах полимера, введенного в поверхностный слой, были определены температуры стеклования каучуков. Оказалось, что температура стекло- [c.231]

    Были предприняты многочисленные исследования для расширения числа реагентов для сшивания целлюлозы. Это привело к разработке методов, основанных на взаимодействии целлюлозы с различными формальдегидными производными мочевины. Число этих производных весьма велико, простейшее из них — мочевиноформаль-дегиднып конденсат (диметилолмочевнна) OH HnNHGONH H OH. [c.192]

    Наличие в целлюлозных волокнах бумаги активных гидроксильных групп обусловливает возможность химической модификации этого субстрата для различных целей и прежде всего для гидрофобизацпи. Существует множество различных способов гидрофобизацип бумаги и целлюлозных волокон, основанных на химическом взаимодействии соединений типа КЗ (Х ) и КК З (Ха) с гидроксильными группами целлюлозы (К, В/ — алифатические радикалы, X — хлор, водород, метоксигрунпа и другие легко гидролизуемые группы) [132—135]. В качестве примера можно привести метод так называемой газовой проклейки, заключающейся в обработке готового бумажного листа парами метилтрихлорсилана. Выделяющаяся при этом соляная кислота нейтрализуется парами аммиака  [c.261]

    Часто для отделки целлюлозных волокон применяют а-хлор-метиленовые эфиры и хлорированные формали. Отщепляющийся при взаимодействии с волокном хлористый водород связывается ацетатом натрия [21] или органическим основанием, например пиридином. Наиболее удобно использовать для такой обработки четвертичные соли алкилхлорметиловых эфиров с пиридином, которые легко взаимодействуют с целлюлозой  [c.271]

    Метод основан на визуальном определении содержания тяжелых металлов в хроматографической зоне по цветной реакции, возникающей на слое модифицированного сорбента, нанесенного на пластинку, после разделения металлов методом тонкослойной хроматографии (ТСХ). В качестве сорбента используют микрокристаллическую целлюлозу, содержащую группы азопирокатехина, которые взаимодействуют с рядом металлов с образованием окрашенных зон при различных pH  [c.95]

    Получение. Взаимодействие акрилонитрила с целлюлозой (цианэтилирование) происходит под действием ш,елочных катализаторов (напр., гидроокисей и алкоголятов щелочных. металлов, сильных органнч. оснований) в водной среде  [c.437]

    Механизм отбелки целлюлозы перекисями изучен очень мало. В недавно проведенном исследовании процесса отбелки еловой древесной массы перекисью натрия Джонс [6] показал, что существенного химического изменения компонентов массы при этом пе происходит. На лигнин тратится около 40"о всей израсходованной перекиси, на голоцеллюлозу (целлюлоза+гемицеллю-лозы)—около 60%. Метилирование экстрагированного лигнина заметно снижает расход перекиси на реакцию с ним на основании этого сделан вывод, что первичная реакция перекиси с лигиипом происходит в результате взаимодействия с карбонильными, а возможно, и с фенольными гидроксильными группами. Характеристики реакции между перекисью натрия и экстрагированным лигнином показывают, что высокая эффективность перекисной отбелки может быть обусловлена высокой специфичностью и реакционной способностью перекиси в отношении наиболее сильно окрашенных лигниновых фракций. Исследование влияния времени и температуры на отбелку древесной массы перекисью водорода и последующее желтение этой массы при ультрафиолетовом облучении изучено Брехтом, Жеймом и Шустером [22], которые сравнили эти результаты с полученными при действии бисульфита и гидросульфита. [c.485]

    Предложен метод производства искусственных волокон, основанный на получении оксиметиловых эфиров целлюлозы при ее взаимодействии с параформом в ди-метилсульфоксиде. Метод позволяет получать гомогенно сшитые или смешанные волокна и организовать безотходное производство. [c.212]

    Все компоненты рецептуры должны вступать в обменное взаимодействие. Оптимальное закрепление пигмента (красителя) в полимерной матрице повышает общую устойчивость многофазной системы. Так, растворимые красители в ПВХ и полиолефинах склонны к вытеканию лишь в тех случаях, когда они плохо закреплены в полимере. На этом основании эфиры целлюлозы лучше окрашиваются красителями, растворимыми в эфирах, а не в жирах. В непластифицированном ПВХ иногда даже наблюдается разделение смеси, называемое плейт-аут на движущихся частях машин (червяки экструдеров, валки) пигмент и мягчитель отслаи- [c.114]

    Полученные результаты исключают какие-либо ранее сделанные некоторыми исследователями предположения об образовании полисольватных слоев в истинных растворах полимеров. Так, например, на основании измерений осмотического давления было найдено, что 1 г ацетата целлюлозы связывает 37— 54 г растворителя или 1 г каучука связывает 33,6 г растворителя". По данным измерения вязкости растворов получается, что 1 г нитрата целлюлозы связывает 530 г растворителя -. Это означает, что на каждый глюкозный остаток приходится 1470 молекул растворителя. Полученные значения превышают сольватацию, определенную описанными выше методами, в сотни раз и не имеют никакого физического смысла. Несостоятельность данных по сольватации, полученных из измерений осмотического давления и вязкости, подтверждается тем, что в ряде случаев рассчиТ-анные количества связанного растворителя значительно больше общего количества растворителя в данном растворе. Причина неправильных выводов заключается в том, что метод осмотического давления и метод вязкости принципиально не могут дать правильной оценки размеров сольватных слоев. Осмотическое давление непосредственно связано с изменением изобарно-изотермического потенциала, которое заключает в себе и изменение внутренней энергии и изменение энтропии (глава XV), в то время как сольватация связана только с изменением внутренней энергии. При определении сольватации методом вязкости использовалось уравнение Эйнштейна (глава Х 1П), которое выведено автором в предположении шарообразных частиц и полного отсутствия их взаимодействия со средой. Очевидно, это уравнение не может быть применено к полимерам, молекулы которых имеют удлиненную форму и сильно взаимодействуют с растворителем. [c.332]


Смотреть страницы где упоминается термин Целлюлоза взаимодействие с основаниями: [c.105]    [c.323]    [c.369]    [c.389]    [c.323]    [c.198]    [c.186]    [c.22]    [c.60]    [c.84]    [c.79]    [c.77]    [c.312]   
Химические реакции полимеров том 2 (1967) -- [ c.311 , c.312 ]




ПОИСК





Смотрите так же термины и статьи:

Взаимодействие с основаниями

Целлюлоза основаниях



© 2025 chem21.info Реклама на сайте