Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Активный центр плотность упаковки

    Кислотная сила активных центров катализатора зависит от соотношения Si/Al, типа цеолита, типа катиона и условий предварительной обработки. Влияние этих факторов можно представить как сочетание двух эффектов ближнего радиуса действия и дальнего радиуса действия [153]. Первый из них обусловлен ближайшими к атому алюминия носителями заряда. Они несомненно создают буферное противодействие, обусловленное ассоциированными катионами [154]. Поэтому вклад данного эффекта зависит от расстояния и числа катионов или гидроксидных групп, которые окружают алюминий [138, 155—158]. Эффект дальнего радиуса действия обусловлен взаимным влиянием всех атомов алюминия и плотностью их упаковки [127, 129, 131, 154, 159]. Когда содержание алюминия в структуре цеолита уменьшается, кислотная сила возрастает. Это подтверждается уменьшением волнового числа кислотных гидроксидов на ИК-спектрах [160]. В относительных единицах кислоты Льюиса более сильны, чем центры Бренстеда в цеолитах [76, 161, 162]. [c.49]


    Очевидно, что этот сложный процесс еще более усложняется в присутствии пластификатора, связанного с макромолекулами полимера. В зависимости от характера пластификатора меняется степень сольватации макромолекул, что в свою очередь влияет на тепловые движения макромолекул, тем самым сообщая пленкам микронеоднородную пористость. Степень заполнения сольватных оболочек макромолекул определяет и характер взаимодействия продиффундировавших молекул с активными центрами цепей полимера. Следует, принимать во внимание и особенности строения полимера и влияние его на проницаемость для различных газов и паров. Проницаемость меньше у полимеров с более сильными межмолекулярными связями (целлюлоза, полиамиды) или у полимеров с регулярной структурой, обладающих высокой степенью кристалличности при слабых межмолекулярных взаимодействиях (например, полиэти-лей). Следовательно, прежде всего можно ожидать, что всякое ослабление межмолекулярных связей или плотности упаковки полимера, в том числе и пластификация, увеличивает проницаемость пленки для газов и паров. [c.219]

    Значение средней плотности упаковки во внутренних областях рибонуклеазы S примерно равно 0,75, что лежит в пределах, найденных для кристаллов типичных небольших органических молекул. Напрнмер, для кристаллов Gly—Phe—Gly плотность упаковки равна 0,749. Однако она немного колеблется, даже если усреднение проноднтся по достаточно большим областям белка. Надо отметить, что в областях, соседних с бороздкой активного центра, плотность упаковки невелика, тогда как в областях, расположенных рядом (т.е. дальше от актинного центра), она намного пренышает среднюю величину. Это может играть определенную функциональную роль. Более рыхлые области обладают большей гибкостью, что допускает внутренние движения, повороты боковых групп и т.д. Области с высокой плотностью упаковки, по всей вероятности, обладают очень большой [c.109]

    Порозпость катализатора — это объем зернистого слоя, пе занятый частицами, т. е. доля пустоты в общем объеме зернистого слоя (в м /м ). В этом свободном объеме движется парогазовая илипа-рожидкостная реакционная смесь, проходя через слой катализатора. Порозность зависит от формы частиц, их шероховатости, плотности упаковки в слое. Порозность частиц влияет на сопротивление в слое катализатора. Частицы катализатора обладают внутренними порами, в которых происходит диффузия сорбирующихся и реагирующих компонентов. Большая часть активных центров катализатора расположена внутри пор. Реакции гидрирования протекают как на поверхности катализатора, так и внутри его пор. [c.79]


    Переходы ортосиликата кальция из одной модификации в другую сводятся к изменению положения ионов кальция в кристаллической решетке. В а- и -формах этого силиката ионы кальция являются активными координационными центрами здесь имеется плотнейшая упаковка структурных элементов решетки. В отличие от этпгп в— a2Si04 наблюдается низкая плотность упаковки. В связи с этим плотность -формы составляет 3,28 г/см , а 7-формы — только 2,97 г/см переход -формы в 7-форму сопровождается увеличением объема почти на 10%. Если этот процесс начался, то он быстро распространяется на всю массу значительное увеличение объема и выделение теплоты вызывает рассыпание кристаллов в пыль. [c.107]

    Белки упакованы так же плотно, как хорошие молекулярные кристаллы. Наблюдаемые локальные плотности упаковки в белках варьируют от 0,68 до 0,82. Низкая плотность найдена в активных центрах [63, 64], что подтверждает предположение о подвижности активных центров. Высокую плотность имеют гидрофобные ядра в центре белка. Средняя плотность упаковки белка составляет около 0,75 (плотность упаковки правильных твердых сферических тел составляет 0,74). Для кристаллов малых молекул, связанных вандерваальсовыми силами, характерны значения от 0,70 до 0,78, в среднем 0,74. Стекла, масла или исключительно мягкие вандерваальсовы кристаллы (или некоторые кристаллы, построенные за счет направленных связей, например водородных связей обычного льда. [c.56]

    Особую трудность представляет выбор значения посадочной площадки адсорбата в монослое со. Установившаяся практика применять постоянную величину для со при адсорбции на поверхности любой природы не оправдана. Упаковка молекул на поверхности определяется их природой, а также природой и расположением активных центров. Значение со для одного и того же адсорбата может меняться при переходе от одного твер- дого тела к другому. Мак-Клеллан и Хернсбергер [12] привели значения / посадочных площадок 106 адсорбатов, определенные из адсорбционных данных и рассчитанные из значений плотности жидкости. Адсорбционный метод обычно дает величину посадочной площадки, большую, чем вычисленная по плотности жидкого адсорбата. Наилучшее соответствие наблюдается для сферических молекул. Причиной наблюдаемых отклонений является химическая и геометрическая неоднородность реальных адсорбентов. [c.27]

    Тепловое движение всей молекулы полимера (микроброунов-ское движение) вследствие ее высокой молекулярной массы крайне ограничено. Непосредственные столкновения реагирующих центров молекулы осуществляются в результате микроброуновско-го движения отдельных сегментов молекулярных цепей. Можно было бы ожидать, что реакции эластомеров должны протекать с меньшей скоростью, чем реакции их низкомолекулярных аналогов, при одинаковых объемных концентрациях. Однако обычно этого не наблюдается. Очевидно, скорость движения сегментов-полимера компенсируется увеличением времени пребывания активных центров в клетке реакционного пространства. Эффект клетки заметно отражается на кинетике и направлении радикальных процессов. Так, концентрация свободных радикалов, образующихся при распаде дисульфидов в среде эластомера, на два порядка выше концентрации таких радикалов, образующихся при распаде чистого дисульфида. Хотя скорость химических реакций полимеров мало чувствительна к изменению молекулярной массы в широком диапазоне, она зависит от гибкости молекулярных цепей и плотности их упаковки. [c.141]

    Поскольку величина работающей поверхности катализатора часто неизвестна, удобнее относить скорость и ее константу к единице массы катализатора (но не насыпного объема, который зависит от плотности упаковки и степени измельчения зерен). Если на единице поверхности катализатора имеется п активных центров, каждый из которых способен адсорбировать одну молекулу реагента, делением п на число Авогадро получим максимальную сорбционную способность единицы поверхности катализатора п М, выраженную в мoль/м . В действительности адсорбированным веществом занята не вся поверхность (или не все активные центры), а только Некоторая часть 0,- (в долях единицы). Тогда концентрация вещества на единице поверхности будет равна [c.174]

    В молекулах белков (альбумины,, глобулины, ферменты и др.) и полипептидов цепи построены из большого количества разнообразных остатков -аминокислот. Помимо последовательно соединяющих их плоскорасположенных пептидных связей —СО—N11 —, аминокислотные остатки связаны большим количеством водородных связей с удаленными остатками. Условия максимального насыщения внутримолекулярных водородных связей и максимальной плотности упаковки аминокислотных остатков в цени нри соблюдении обычных валентных углов и расстояний приводят к характерному свертыванию цепи в спирали. По теории Паулинга и Корея, в глобулярных белках, а-кератине и некоторых полипептидах свертывание происходит по типу а-спирали (рис. 120), где на 3 витка спирали приходится по 11 остатков и через каждый третий аминокислотный остаток между] пептидными группами образуется водородная связь (отмечена пунктиром), параллельная оси спирали. Последовательность аминокислотных остатков различна для каждого белка, что создает на поверхности спирали из боковых цепей аминокислот специфичный рельеф, определяющий структуру центров ферментативной, антигенной,, гормональной и других активностей белка. Взаимодействие боковых цепей вызывает также специфические для каждого белка отклонения основного хода спирали. В фибриллярных белках (фиброин шелка, В-кератин, миозин и др.) спирали вытянуты и водородные связи соединяют соседние цепи по перпендикулярным к их осям направлениям. [c.274]


    Кольшюттер и Торичелли [5] выяснили условия, при которых рост кристаллов прекращается. Они заметили, что растущий монокристалл серебра пассивируется при замедлении процесса выделения металла на его грани, (вызываемом уменьшением истинной плотности тока вследствие роста поверхности кристалла. При искусственном пассивировании серебра кратковременным прерыванием тока пассивировались лишь некоторые активные центры на кристалле. При увеличении продолжительности нахождения электрода в электролите без тока пассивированию подвергались вершины или целые грани кристалла. Наконец, при достаточно большой продолжительности нахождения электрода в электролите без тока пассивировался весь кристалл. Такая последовательность пассивирования кажется естественной, если исходить из предположения, что на вершинах кристалла атомы наиболее нена-сыщены и поэтому обладают наибольшей адсорбционной способностью. Менее активные атомы расположены на ребрах кристалла, а наименее активные — на гранях. Грани кристаллов с неодинаковой упаковкой атомов имеют различную склонность к пассивированию. [c.12]


Смотреть страницы где упоминается термин Активный центр плотность упаковки: [c.200]    [c.101]    [c.7]    [c.196]    [c.164]    [c.98]    [c.111]    [c.19]   
Принципы структурной организации белков (1982) -- [ c.57 ]

Принципы структурной организации белков (1982) -- [ c.57 ]




ПОИСК





Смотрите так же термины и статьи:

Активность Активные центры

Активный центр



© 2024 chem21.info Реклама на сайте