Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Силикаты структура

    Основанная на теории МО зонная модель электронного строения металлов, полупроводников и диэлектриков может показаться не сразу очевидной всем студентам, но после ее обсуждения и объяснения она обычно усваивается. Последний раздел, посвященный силикатам, можно опустить без ущерба для усвоения важнейших понятий, но он дает хорошую возможность закрепить положение о связи между структурой и свойствами и обычно вызывает интерес у студентов. [c.577]


    Трехкальциевый силикат. Структура трехкальциевого силиката также неизвестна. Можно утверждать, что после образования двухкальциевого силиката внедрение еще одной молекулы окиси кальция в кристаллическую решетку двухкальциевого силиката происходит с трудом и требует высокой температуры и длительной выдержки. Несомненно, что третья молекула окиси кальция, внедряясь в кристаллическую решетку двухкальциевого силиката, производит значительную деформацию последней и, видимо, расширяет полости в ней. Если это так, то тогда легко объяснить явления, происходящие при действии воды на трехкальциевый силикат. Вода благодаря более широким полостям в кристаллической решетке с большой быстротой проникает внутрь. При этом происходит выделение гидрата окиси кальция, так как третья молекула извести слабо связана в кристаллической решетке и выделяется довольно легко. [c.191]

    Все упоминавшиеся до сих пор силикаты построены из дискретных анионов. Другой класс силикатов содержит бесконечные цепочки связанных между собой кремнекислородных тетраэдров. В некоторых минералах содержатся отдельные силикатные цепочки, описываемые формулой (8Юз) " . Одна из форм асбеста имеет двухцепочечную структуру, показанную на рис. 14-31. Двойные цепочки связываются друг с другом электростатическими силами, действующими между этими цепочками и упакованными вокруг них катионами На , Ре и Ре . Разъединение цепочек осуществляется гораздо легче, чем разрыв ковалентных связей внутри отдельной цепочки. Это объясняет нитевидную легко расщепляемую текстуру асбеста. В кремнекислородных тетраэдрах до одной четверти ионов кремния может замещаться ионами алюминия. Однако каждое такое замещение требует добавления одного положительного заряда путем введения другого катиона (например, К чтобы скомпенсировать заряд на силикатных атомах кислорода. Физические свойства силикатных минералов очень сильно зависят от того, какая доля ионов замещена ионами А1 и сколько дополнительных катионов необходимо в связи с этим для компенсации заряда. [c.634]

    Более всего похожи на структуры силикатов структуры германатов и фосфатов. Однако Р и Ое или совсем не встречаются в силикатах, или находятся там в виде очень небольших примесей и поэтому не играют какой-либо существенной роли. [c.341]

    В техническом отнощении крайне ценными оказались бы такие материалы, которые, наряду с комплексом физико-механических свойств, характерных для органических полимерных веществ (эластичность и др.), обладали бы такой термо- и химической стойкостью, какой отличаются силикаты. Структура таких материалов должна была бы, естественно, характеризоваться содержанием элементов, типичных для обоих вышеназванных классов полимеров. [c.611]

    Элементарной структурной ячейкой силикатов является кремнекислородный тетраэдр такие тетраэдры могут образовывать циклические, цепные, листовые и трехмерные каркасные структуры. Часть атомов кремния способна замещаться алюминием, но при этом компенсация заряда требует введения дополнительных катионов, что приводит к усилению электростатического вклада в химическую связь кристалла. На примере силикатов иллюстрируются четыре из пяти типов связи, обсуждавшихся в данной главе ковалентная связь между атомами кремния и кислородом в тетраэдрах, вандерваальсовы силы между силикатными листами в тальке, ионное притяжение между заряженными листами и цепочками, а также водородные связи между молекулами воды и силикатными атомами кислорода в глинах. Если включить в этот перечень еще никелевые катализаторы на глиняном носителе, то мы охватим и пятый тип химической связи (металлический). [c.640]


    Тепловое расширение кварцевого стекла с точки зрения представлений о колебательных движениях атомов исследовал Смите [396]. Вычисляя величину свободной энергии из суммированной энергии осцилляторов, Смите нашел, что знак теплового расширения зависит от того, уменьшается или увеличивается частота главного по энергетическому вкладу осциллятора — поперечных колебаний атомов кислорода при увеличении внутриатомных расстояний. Укладка атомов в стеклообразном кремнеземе и его высокотемпературных кристаллических модификациях — не плотнейшая. Для таких структур с увеличением частоты колебаний атомов кислорода (или им эквивалентных) происходит увеличение внутриатомных расстояний, и потому тепловое расширение имеет отрицательное значение. По достижении определенной величины, внутриатомные расстояния с увеличением частоты вибраций атомов кислорода начинают уменьшаться и коэффициент теплового расширения становится положительным. Аналогично этому происходят процессы и в сильно разрыхленных структурах высокотемпературных модификаций кремнезема, а также и некоторых силикатов, структура которых им подобна. В низкотемпературных кристаллических модификациях кремнезема укладка атомов более плотная, и свобода для поперечных колебаний атома кислорода здесь меньше. Тепловое расширение этих форм кремнезема, как указывалось выше, определяется изменением угла связей. [c.121]

    В техническом отношении большую ценность имеют такие материалы, которые наряду с комплексом физико-механических свойств, характерных для органических полимерных веществ (эластичность и др.), обладают тепловой и химической стойкостью, присущей силикатам. Структура этих материалов характеризуется содержанием элементов, типичных для обоих классов полимеров. Полимеры, основная цепь которых содержит силоксановые связи, а боковые группы — углеродистые связи, называют кремнийорганическими. [c.43]

    Гольдшмидт [2] указал, что структурное сходство между ВеРа и 5102 распространяется и на их соединения и что существуют пары фторбериллатов и силикатов, имеющие одинаковые структуры. Это явление объясняется близостью ионных радиусов и Р (1,40 и 1,36 А соответственно). Поскольку заряд центрального иона во фторбериллате вдвое меньше, чем в силикате, структуры фторбериллатов менее прочны. Они отличаются более низкими температурами плавления, меньшей твердостью и обладают меньшей химической стойкостью, чем силикаты. Гольдшмидт назвал такую ситуацию, когда два соединения имеют [c.246]

    Широкое и быстрое распространение природных и синтетических цеолитов в промышленности заставило подробно исследовать их структуру. В частности, изучение силикатов показало, что группы 510 с тетраэдрической структурой могут объединяться между собой при помощи атомов кислорода, расположенных по углам тетраэдра так, что получаются макромолекулярные ионы или макромолекулы с самым различным строением двухмерным (тетраэдры с тремя общими углами), трехмерным (тетраэдры с четырьмя общими углами) и т. д. Таким образом, образуется много различных структур, например, линейные (волокнистые силикаты), двухмерные (слоистые силикаты) и трехмерные (полевые шпаты и цеолиты) макромолекулярные ионы. Среди них есть силикаты с кристаллическими решетками, имеющими пустоты в виде каналов или слоев. [c.83]

    Повышенное или пониженное значение плотности прочно связанной воды по сравнению с обычной жидкой водой будет зависеть от того, какой из двух факторов — усиление энергии связи или разупорядочивающее влияние подложки — окажется преобладающим. Для слоистых силикатов (см. табл. 2.2),кремнезема [87], цеолита NaX [88] плотность адсорбированной воды выше единицы. Это обусловлено высокой энергией связи при относительно небольшом разупорядочивающем влиянии подложки. Последнее объясняется хорошим структурным соответствием между узором поверхностных атомов кислорода (и гидроксильных групп в случае кремнезема) слоистых силикатов и кремнеземов, с одной стороны, и элементами структуры воды — с другой. Недаром получившая широкое распространение первая модель структуры адсорбированной слоистыми силикатами воды представляла собой плоский вариант структуры льда [89]. Н. В. Белов подметил идентичность формы и размеров полостей цеолита X и крупных додекаэдрических молекул воды Н20 20а<7 и на основе этого предположил, что [c.35]

    Для описания структуры граничных слоев воды была предложена [71] модель анизотропных доменов, размеры которых вдоль осей а ъ Ь (вдоль плоских поверхностей частиц слоистых силикатов) существенно больше, чем вдоль оси с (перпендикулярно поверхности пластинчатых частиц). Такое строение граничных слоев позволяет объяснить, с одной стороны, их повышенную вязкость (при приложении внешней нагрузки текут не индивидуальные молекулы, а домены), а с другой,— меньшее число водородных связей, в которых участвует каждая молекула воды (этот вывод, естественно, вытекает из анизотропной структуры ассоциатов). [c.40]

    Глинистые минералы представляют собой силикаты с листовой структурой, подобной имеющейся в слюде. Эти слоистые структуры обладают высокоразвитыми внутренними поверхностями и поэтому часто способны поглощать большие количества воды и других веществ, внедряю- [c.636]

    Кристаллическая рещетка 5Юг (и силикатов) состоит из атомов кремния, окруженных 4 атомами кислорода — кремнекислородных тетраэдров. Они могут соединяться друг с другом общими вершинами (но не общим ребром), что обусловливает существование огромного многообразия структур силикатов. [c.371]


    Все эти особенности структуры силикатных кристаллов приводят к тому, что хотя ионы и содержатся в них, однако структура кристалла в отличие от типичных ионных кристаллов определяется здесь силикатным или алюмо-силикатным скелетом, связи в котором являются преимущественно ковалентными. Этим объясняются высокие температуры плавления силикатов и их нелетучесть. Это же приводит к свойственной некоторым силикатам способности легко обменивать ионы одних металлов на ионы других. Так, некоторые природные цеолиты или искусственно приготовляемые силикаты при взаимодействии с водными растворами солей могут частично обменивать содержащиеся в них катионы на катионы, имеющиеся в растворе. При этом обязательным условием является, чтобы размеры этих ионов не различались значительно. Так, ионы натрия Ыа" (радиус 1,05 А) легко обмениваются на ионы кальция Са + (радиус 0,95 А) в соотношении 2 1, причем сохраняется нейтральность кристалла в целом. Искусственные цеолиты используются также в качестве адсорбентов молекулярные сита, см. стр. 373)..  [c.135]

    Характер действия катализаторов определяется их химической природой. Так, благодаря носителям, обладающим кислотной природой, — алюмосиликатам аморфной и кристаллической структуры, магний- и цирконий-силикатам, а также фосфатам, катализаторы помимо гидрирующих свойств обладают изомеризующей и расщепляющей способностью. Носители нейтральной природы — окись алюминия, окись кремния, окись магния и др., не придают, как правило, дополнительных свойств катализаторам гидрогенизационных процессов [36]. [c.66]

    Существуют, однако, и силикаты, структура которых основана на плотнейшей упаковке (например, форстерит 2Mg0 Si02), а также силикаты, в структуре которых анионы распределяются по местам плотнейшей шаровой упаковки, но не занимают всех этих мест, в результате чего в структуре образуются крупные пустоты, соизмеримые по величине с размером шаров упаковки. [c.18]

    Цепи, ленты и слои связаны между собой расположенными между ними катионами. В зависимости от типа оксосиликатных анионов силикаты имеют волокнистую (асбест), слоистую (слюда) структуру. [c.418]

    Силикатные цементы синтезируют обжигом (при 1400—1600°С) до спекания тонкоизмельченной смеси известняка и богатой 5102 глины. При этом частично разрушаются связи 5 — О — 5 и А1 — О — А1, образуются относительно простые по структуре силикаты и алкминаты кальция и выделяется СОг. Тонко измельченный цементный рлинкер, будучи замешан сводой в тестообразную массу, постепенно твердеет. Этот переход (схватывание цемента) обусловливается сложными процессами гидратации и поликонденсации составных частей клинкера,, приводящими к образованию высокомолекулярных силикатов и алюминатов кальция. [c.483]

    Катализатор крекинга для получения бензина описан в литс-ратуре . Растворы силиката натрия и сульфата алюминия смешиваются и разбрызгиваются в слое масла, где они образуют шарики. Эти шарики после обработки горячей водой (чтобы создать нужную структуру) подвергают реакции обмена с замещением натрия алюминием, промывают для удаления растворимых солей и затем сушат. Далее их выдерживают некоторое время при высокой температуре для снятия напряжений, возникающих в процессе сушки. На рис. 1Х-7 изображена упрощенная технологическая схема процесса. [c.322]

    С рядом весьма сложных диаграмм состояния приходится встречаться не только в случае сплавов металлов, но и при изучении силикатов, т. е. соединений, в состав которых входят группы (ионы) 51тО . Окись кремния в сочетании с окислами различных других элементов образует ряд весьма разнообразных систем, которые служат материалом для изготовления цемента, огнеупоров, керамики, стекол, катализаторов или подкладок для катализаторов. Изучению структур силикатов посвящено очень много работ, в которых используются разнообразные методы, в том числе и методы физико-химического анализа. Диаграммы состояния силикатных систем бывают очень сложны вследствие образования ряда промежуточных соединений из основных компонентов системы и вследствие способности многих соединений, а также и исходных компонентов переходить по мере охлаждения от одной кристаллической модификации к другой. Кроме того, в силикатных системах нередко образуются твердые растворы. [c.418]

    Для приготовления цеолита смешивают силикат натрия, алюминат нагрня и гидрат окнси натрия. Соотношения этих веществ зависят от того, какого типа цеолит нужно приготовить. Смесь вводят в кристаллизатор и выдерживают при 100° несколько часов. Затем крисгаллы и )Омывают водой, добавляют глину в качестве связующей) агента и формуют. Гранулированный цеолит прокаливают при 650". По своей кристаллической структуре цеолит можно рассматривать как соль ноликремневой кислоты, в которой часть атомов кремния заменена на атомы алюминия. [c.24]

    Большое применение находят природные силикаты магния тальк 3MgO-45102-HqO и особенно асбест a0-3Mg0-4Si02. Последний, благодаря своей огнестойкости, малой теплопроводности и волокнистой структуре, является прекрасным теплоизоляционным материалом. [c.614]

    Наличие конституционной воды, т. е. поверхностных и структурных (или внутриглобульных) гидроксильных групп, присуще практически всем гидрофильным дисперсным материалам, в том числе и дисперсным силикатам. Состояние гидроксильных групп в структуре последних и те превращения, которые претерпевают эти минералы при термическом дегидроксилиро-вании, подробно рассмотрены в работах [68—70]. [c.31]

    В табл. 2.2 приведены основные величины, необходимые для расчета плотности связанной воды в однослойных и двухслойных гидратах Ыа-форм монтмориллонита и вермикулита [68, 81, 82], и значения самих плотностей р. Значения,. находили вычитанием толщины элементарных слоев монтмориллонита (0,94 нм) и вермикулита (0,92 нм) из величин первых базальных отражений. Объемы межслоевых катионов и дитригональ-ных лунок на поверхности силикатных слоев в расчетах р не учитывали принималось, что они взаимно компенсируют друг друга. Из анализа приведенных в табл. 2.2 данных видно, что плотность воды в двухслойных гидратах слоистых силикатов с расширяющейся структурной ячейкой превышает плотность жидкой воды (1,0 г/см ). Более низкое расчетное значение р для двухслойного гидрата ковдорского вермикулита объясняется неточным учетом числа нерасширяющихся флогопитоподобных пакетов в его структуре [66]. [c.34]

    Системы с пониженной размерностью. Обычные теории межмолекулярного вклада в протонную магнитную релаксацию, предложенные для трехмерных систем, не применимы для систем с пониженной размерностью, например для одномерных (Ш) или двумерных (2D) систем. Вместе с тем при исследовании структуры воды в гидрофильных объектах системы такого типа встречаются довольно часто например, вода, адсорбированная на плоской подложке, вода между плоскими пластинками слоистых силикатов или вода в плоских бислоях лиотропных жидких кристаллов — все это характерные примеры 2D-систем. Обзор теорий магнитной релаксации для систем с пониженной размерностью дан в работе [607]. Интересной особенностью неограниченных систем с пониженной размерностью является то, что для них функция спектральной плотности при малых частотах расходится и I (со- 0)->оо. Для ограниченных систем (когда величина d на рис. 14.1 конечна) расходимости при малых частотах нет, но для таких систем на кривой зависимости T i(t ) наблюдаются два минимума, соответствующие условиям (uqT 1 и (ooTiat l, где -Tiat ii /(4D, ). Детальное обсуждение экспериментальных результатов по ЯМР релаксации в ограниченных двумерных системах приведено в работе [608]. [c.237]

    Все природные и большинство синтетических цеолитов представляют собой алюмосиликаты. Наибольшее значение в катализе имеют кристаллические алюмосиликатные цеолиты типа А, X, У и другие, с прочным трехмерным скелетом [215]. Общую формулу цеолитов можно представить в виде Мг/пО-АЬОз- сЗЮг-г/НгО, где п — валентность металлического катиона М л — мольное соотношение ЗЮг АЬОа у — число молей воды. Величина х в значительной степени определяет структуру и свойства цеолитов. В цеолите типа А X близок к 2 в цеолитах типа X — изменяется от 2,2 до 3 У — от 3,1 до 5,0 в синтетическом мордените достигает 10. Для каталитических процессов используют цеолиты с х = 2,8—6,0 [215, 216]. При различных условиях синтеза цеолитньус катализаторов (химический состав кристаллизуемой массы, параметры кристаллизации, природу катиона) можно в широких пределах изменять величину X [217, 218]. Так, низкокремнистые катализаторы (х = = 1,9—2,8) синтезируют в сильно щелочной среде, а в качестве источника кремнезема используют силикат натрия. Для получения высококремнистых цеолитов применяют более реакционно-способные золи или гели кремневой кислоты, а синтез проводят в менее щелочной среде [219]. [c.172]

    Силикатные минералы. Кремнекислородные тетраэдры. Цепные структуры и листовые структуры. Трехмерные карк ные силикаты. [c.601]

    Раздельно готовят растворы сульфата алюминия и жидкого стекла (силиката натрия). Чтобы образовался гель высокопрочндй структуры, требуется медленное протекание коагуляции (5—15 сек). Мгновенная коагуляция приводит к образованию рыхлых мёловидных [c.177]

    Большая устойчивость всех этих структур подтверждается, в частности, тем, что в природных соединениях атомы названных элементов находятся преимущественно в состоянии ионов, обладающих указанной структурой электронных оболочек (Na l. K l, a Os. Mg lj, силикаты соответствующих металлов и т. д.). [c.61]

    Шефер Д., Кефер К. Структура случайных силикатов полимеры, коллоиды и пористые твердые тела /Фракталы в физике. - М Мир, 1988.- С. 62-71. [c.31]


Смотреть страницы где упоминается термин Силикаты структура: [c.183]    [c.5]    [c.307]    [c.139]    [c.456]    [c.64]    [c.514]    [c.374]    [c.58]    [c.13]    [c.181]    [c.9]    [c.10]    [c.137]    [c.157]   
Учебник общей химии (1981) -- [ c.326 ]

Современная общая химия Том 3 (1975) -- [ c.2 , c.310 ]

Современная общая химия (1975) -- [ c.2 , c.310 ]




ПОИСК





Смотрите так же термины и статьи:

Айсберги в структуре силикатов

Двухкальциевый силикат структура

Классификация структур силикатов

Кристаллическая структура силикатов

Магний, силикат структура

Модельные, структуры силикатов

Особые структуры силикатов

Пространственные структуры силикатов

Радиусы в структурах силикатов реальные

Радиусы в структурах силикатов, ионные

СИЛИКАТЫ В РАЗЛИЧНЫХ СОСТОЯНИЯХ Методы изучения структуры силикатов

Силикаты

Силикаты классы структур

Силикаты с каркасной структурой

Силикаты со слоистой структурой, получение

Силикаты сравнение структур

Специальные структуры силикатов

Структуры с полианионами, образованными атомами нескольких элементов, силикаты

Теория о структурах кристаллических силикатов Брэгг



© 2025 chem21.info Реклама на сайте