Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Анаэробное окисление углеводородов

    Анаэробное окисление углеводородов [c.35]

    Г и д р о с у л ь ф и д ы и другие восстановленные формы серы в водах (молекулярно растворенный сероводород, а также тиосуль-фаты, сульфиты и др.) генетически связаны с процессом анаэробного окисления углеводородов, как и аналогичные образования в породах. [c.171]

    Большой интерес представляет решение вопроса о возникновении в подземных водах органических кислот, в частности высоких концентраций кислот жирного ряда. Возможно, большая роль в этом принадлежит бактериальному окислению углеводородов. Органические кислоты являются промежуточным продуктом анаэробного распада многих органических соединений (помимо углеводородов), присутствующих в подземных водах — углеводов, гемицеллюлоз, клетчатки, битуминозных веществ и др. Кроме того, допускается процесс образования, например, уксусной кислоты из водорода и углекислоты. Этим также можно объяснить присутствие органических кислот в различных подземных водах. [c.164]


    Однако максимальные их концентрации в водах нефтегазовых месторождений, по-видимому, связаны с анаэробным бактериальным окислением углеводородов. Для примера рассмотрим одну из возможных схем микробиологического образования жирных кислот при использовании микроорганизмами углеводородов [157]  [c.165]

    При сбраживании в течение 20 суток анаэробное окисление оказалось более эффективным для разрушения циклопарафиновых углеводородов, чем аэробное окисление (табл. 4.12). [c.152]

    Денитрификация — процесс восстановления азота нитратов до свободного азота при окислении органического вещества специфической группой микроорганизмов, называемых денитрификаторами. Денитрифицирующие бактерии являются факультативными анаэробами и обладают двумя источниками энергии. В аэробных условиях они могут вести окисление органических веществ кислородом воздуха, в анаэробных — окисление тех же веществ за счет нитратов. Следовательно, процесс денитрификации может осуществляться при наличии источника органической энергии и в отсутствии кислорода. Денитрифицирующие бактерии окисляют широкий круг веществ углеводы, спирты, органические кислоты, углеводороды, продукты распада белков. На основании этого, в качестве субстрата, подаваемого в денитрификатор, применя-ю.тся сырые сточные воды, прошедшие очистку в первичных отстойниках, различные спирты, ацетон, уксусная кислота, осадок из вторичных [c.209]

    Анаэробное окисление ароматических углеводородов [c.338]

    Анаэробное окисление алифатических углеводородов [c.338]

    Работами прошлых лет доказана принципиальная возможность биологического окисления нефтей как в аэробных, так и анаэробных условиях [11]. Было найдено, что биологическое изменение приводит к постепенному превращению парафинистых нефтей в нафтеновые в силу избирательного потребления микроорганизмами углеводородов ряда метана. Так, в процессе биодеградации происходит повышение плотности нефтей и увеличение доли смолистых соединений. [c.232]

    Очистка бытовых и ливневых сточных вод производится в очистных сооружениях. Для очистки от взвешенных веществ применяются отстойники и песколовки, в которых взвеси осаждаются в результате отстаивания или медленного движения воды при небольшой глубине потока. Для очистки от фекалий и других биологических отбросов применяется биоочистка, заключающаяся либо в их окислении до углекислого газа и воды с помощью аэробных (потребляющих кислород) бактерий, содержащихся в активном иле, либо в переводе их в биогаз, содержащий простейшие углеводороды метанового ряда, с помощью анаэробных бактерий. Полученные осадки и активный ил иногда используются в качестве удобрений, но чаще уничтожаются с помощью сжигания в специальных печах с хорошей газоочисткой отходящих газов. Для доочистки воды используются такие физико-химические методы как коагуляция, адсорбция и фильтрация. [c.62]


    Па некоторых жирных кислотах установлено ", что при низких температурах (до 200°) происходит превращение со снижением кислотного числа. Также установлено, что продуктом превращения является соответствующий кетон. Интересным фактом с точки зрения разработанной одним из нас теории происхождения нефти является обнаруженное нами превращение канифоли и каналов в присутствии активных глин в углеводороды. Новая теория происхождения нефти, выдвинутая в 1942 г., устанавливает на основе обширного экспериментального материала, что в присутствии природных активных глин происходит преобразование органических соединений со снижением степени окисления. Весь изложенный выше материал показывает, насколько велика область превращений, вызываемых алюмосиликатами. Действие природных активных глин на продукты анаэробного биохимического превращения животных и растительных остатков приводит при 150—200° к образованию нефти. Эта область температур достаточна для осуществления реакций дегидратации спиртов и кетонов, полимеризации, изомеризации, диспропорционирования, образования углеводородов и кетонов из кислот, которые, несомненно, имеют место в процессе образования нефти. [c.269]

    Кислоты образуют безвредные минеральные соли, и сточная вода может быть сброшена в водоемы. Таким образом, целью биологических методов очистки сточных вод является создание благоприятных условий для размножения полезных в данном случае бактерий. Эти условия могут быть созданы при доступе или без доступа кислорода воздуха. В первом случае будут развиваться так называемые аэробные бактерии и в процессе окисления органические вещества будут превращаться в минеральные. Во втором случае развиваются анаэробные бактерии, которые в процессе гниения будут разрушать органические вещества с образованием аммиака и газообразных углеводородов. [c.42]

    Биологические способы применяют для очистки, главным образом, фекальных вод, т. е. сточных вод населенных пунктов. Эти методы заключаются в разрушении органических загрязнений под влиянием жизнедеятельности микроорганизмов. Так, например, некоторые бактерии перерабатывают получающийся в результате разложения органических веществ сероводород в серную кислоту, а аммиак и органический азот — в азотистую и далее в азотную кислоту. Эти кислоты образуют безвредные минеральные соли, после чего сточная вода может быть спущена в реку. Таким образом, задачей биологических методов очистки сточных вод является создание благоприятных условий для размножения полезных в данном случае бактерий. Эти условия могут быть созданы как с доступом, так и без доступа кислорода воздуха. В первом случае будут развиваться так называемые аэробные бактерии, и в процессе окисления органические вещества будут переходить в минеральные, а во втором случае будут развиваться анаэробные бактерии, которые в процессе гниения будут разрушать органические вещества, причем образуются аммиак и газообразные углеводороды. [c.29]

    Выше уже отмечалось, что только некоторые бактерии способны ассимилировать молекулярный азот с образованием из него аммиака, который используется для синтеза аминокислот и других азотсодержащих веществ клеток. Лишь некоторые микроорганизмы могут расти, используя углеводороды, лигнин и ряд других соединений углерода, а также получая энергию в результате окисления ряда неорганических веществ. Это определяется наличием у них особых ферментов, катализирующих реакции, к которым микроорганизмы не способны. Только среди микроорганизмов есть виды, способные расти в отсутствие молекулярного кислорода в результате таких энергетических процессов, как различные брожения и анаэробное дыхание. [c.26]

    Анаэробное окисление углеводородов возможно в толще нефтепродукта, либо в смеси последнего и воды, либо в глубине нефтеносных пластов, без доступа воздуха. Практически подобные условия встречаются при хранении нефти и нефтепродуктов, особенно в больших резервуарах, а также при бурении нефтяных скважин или яри заводнении пластов с целью вторичной добычи нефти, наконец, в системах теплообмена на нефтеперерабатывающих заводах. Возбудителями анаэробного окисления углеводородов являются чаще всего сульфат-восстанавливающие бактерии (серобактерии), особенно родов Desulfovibrio, а также Pseudomonas. Редукция сульфатов под действием микроорганизмов представляет собою окислительно-восстановительный процесс. При [c.35]

    Роль УОБ в данном сообществе сводится к потреблению в процессе жизнедеятельности кислорода и формировании анаэробной среды, окислении углеводородов нефти с образованием промежуточных продуктов неполного окисления - спиртов, альдегидов, которые в создавшихся анаэробных условиях потребляются СВБ в ходе питания. Тионовые бактерии, потребляя кислород, как и УОБ, способствуют созданию анаэробных условий для СВБ. Следует отметить, что в процессе своего развития тионовые бактерии способны окислять не только серу, пирит, но и продукты жизнедеятельности СВБ - сульфиды, сероводород - в сульфаты, являющиеся важным компонентом энергообразующего процесса для СВБ. В процессе жизнедеятельности тионовых бактерий обеспечивается круговорот серы, столь важный для взаимного существования этих микроорганизмов и СВБ. [c.127]


    Окисление углеводородов проводили в биохимическом ТЭ прямого действия. Элемент представляет собой сосуд, разделенный двумя мембранами на три части анодный и катодный нолуэлементы и сепараторную камеру. Анодный нолуэлемент является анаэробной ячейкой, в которой расположены три ввода для подачи культуры микробов, питательной среды для них, акцеп-240 [c.348]

    Несколько иная картина наблюдается в соленоводных лагунах, особенно если придонный слой отравлен сероводородом. В этих условиях ненасыщенные жирные кислоты частично подвергаются полимеризации, а частично совместно с насыщенными кислотами претерпевают анаэробное окисление, приводящее к декарбоксилированию и образованию углеводородов. Время от времени эти сапропели выбрасывались на песчаные отмели, обдуваемые воздухом. Кислород воздуха окислял часть ненасыщенных соединений, а образующиеся продукты окисления ускоряли процессы полимеризации. Это приводило к тому, что относительно мягкий сапропель, содержащий некоторое количество углеводородов, быстро превращался в упругую массу. Эта однородная масса с течением времени вследствие синерезиса начинала выделять заключенные в ней жидкие масла, которые и собирались в виде больших или меньших скоплений. Таким [c.32]

    По сравнению с псевдомонадами бактерии накопляли биомассу менее интенсивно. По активности внеклеточных ферментов они также уступали Pseudomonas. Количество химических загрязнений, окисленных внеклеточными ферментами, составляло 1% к сухому веществу активного ила. Длительность процесса окисления углеводородов увеличивалась на двое суток. Длительность процесса окисления составляла 9 суток, экономический коэффициент 30%, количество загрязнений, окисляемых внутриклеточными ферментами, составляло 1,5%, внеклеточными — 0,9% к массе сухого вещества активного ила. Капнеические и факультативно-анаэробные формы составляли 25% от общей численности бактерий интенсивность аэрации 3,8 м /(м -ч). [c.142]

    При анаэробном окислении связанный кислород, например ионов МОз или 80/ , не включается в молекулы ароматических соединений и в этих случаях оксигеназы не функционируют. В аноксигенных условиях у насыщенных алифатических углеводородов отщепляется водород с образованием двойной связи нитратный или сульфатный ион является конечным акцептором водорода. Образовавшийся алкен присоединяет воду с образованием спирта и в дальнейшем окисляется анаэробно в альдегид и жирную кислоту, подвергающуюся Р-окислению  [c.328]

    Основной процесс газообразования на полигоне сводится к микробиологическому разложению органических компонентов, имеющему четко выделенную зональность. В верхней зоне полигона (0-1,5 м) протекает аэробный процесс, на более низких горизонтах располагается сфера анаэробного сбраживания. На границе анаэробной и аэробной зон находится переход[юй участок, в котором протекает процесс неполного окисления биогаза иэ нижней зоны. В аэробной зоне в естественных условиях имеет место полное окисление таких компонентов биогаза, как метан и водород, т.е. эффективно действует так называемый окислительный биофильтр. При рыхлении поверхности, высаживании трав на полигоне этот биофильтр работает еще более интенсивно. Однако при добыче биогаэа его аэробное превращение до момента использования является вредным, поскольку он в этом случае резко снижает свою теплотворную способность за счет окисления части углеводородов и повышения содержания углекислого компонента. Поэтому при отборе газа для хозяйственных нужд поверхность полигона должна бьггь хорошо уплотнена или укрыта, а отвод биогаза необходимо вести иэ зоны наиболее активного восстановления его компонентов, обычно лежащей на глубине 2-6 м от поверхности. [c.363]

    Возможны два пути ликвидации загрязнения почв нефтью удаление за.Грязненного слоя почвы и восстановлЬние ее в естественных условиях. Однако естественный процесс восстановления протекает довольно длительно. Это объясняется тем, что при загрязнении почв нефйьк) в них начинают преобладать анаэробные условия, а разложение составных компонентов нефти происходит путем окисления при обязательном участии молекулярного кислорода. Анаэробные микроорганизмы усваивают одну десятую того количества углеводородов нефти, которое способны утилизировать аэробные виды. В процессах естественного самоочищения почв большую роль играет состояние водного режима в момент загрязнения во влажной почвё нефть более устойчива к микробиологическому разложению. [c.389]

    Последняя стадия заключается в преобразовании кислот в цикле Кребса до простых продуктов, при полном окислении до диоксида углерода и воды. Наиболее энергично окисляют алканы бактерии Pseudomonas, микобактерии, актиномицеты. Разложение углеводородов может происходить и в анаэробных условиях в присутствии веществ, способных отдавать кислород. [c.258]

    При окислении к-гексадекана (цетана) Ps. aeruginosa конечным продуктом является цетиловый эфир пальмитиновой кислоты [10 ]. В процессе окисления октадекана образуются октадециловые эфиры пальмитиновой и стеариновой кислот. В метантенках углеводород-окисляющие бактерии из рода Pseudomonas способны в анаэробных условиях осуществлять дегидрирование некоторых предельных углеводородов до олефинов [И]. [c.130]

    Аноксигенному окислению и анаэробному сбраживанию подвергаются органические субстраты и ксенобиотики природные полимеры (целлюлоза и белки), углеводы и жиры, органические спирты, кислоты и основания, углеводороды, хлорированные соединения и др. [c.178]

    IV. Наиболее полно изучены реакции, катализируемые так называемыми оксигеназами смешанной функции, активность которых связана с группой гемопротеидов, известных под общим названием цитохрома Р-450. Их назначение заключается в окислительной деградации широкого спектра липофильных соединений, включая стероидные, а также полициклические углеводороды и обширный круг фармакологически активных соединений. Во всех этих реакциях один атом молекулярного кислорода внедряется в соответствующий продукт и сопровождается окислением восстановленного пиридиннуклеотида [2, 63,119, 222, 560]. Начальный компонент этой электронтранспортной редокс-цепи мембрано-связанный флавопротеид НАДФН—цитохром Р-450 редуктаза содержит в эквимолярных количествах ФАД и ФМН 1299]. Фермент специфичен для мик-росомальной фракции, так как 65—85% его энзимной активности обнаружено именно в ней [2]. До 30% его активности связывается с наружной мембраной ядра [229, 321, 550]. В митохондриальной мембране НАДФН— цнтохром Р-450 редуктаза не найдена [487]. Этот флавопротеид может реагировать с искусственными акцепторами различного рода и переносить электроны к анаэробным акцепторам типа цитохрома с, 2,6-дифенил-индофенола, менадиона, а также к молекулярному кислороду [251] и цитохрому bs [304, 376, 405, 465]. [c.121]


Смотреть страницы где упоминается термин Анаэробное окисление углеводородов: [c.59]    [c.629]    [c.63]    [c.155]    [c.141]    [c.59]    [c.82]    [c.277]    [c.20]    [c.133]    [c.97]   
Смотреть главы в:

Защита нефтепродуктов от действия микроорганизмов -> Анаэробное окисление углеводородов




ПОИСК







© 2025 chem21.info Реклама на сайте