Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бактерии анаэробные их помощи

    В-третьих, водород может вызвать гидрогенизацию ненасыщенных углеводородов, чем, возможно, и объясняется отсутствие или незначительное содержание олефинов в нефтях. Влияние бактерий может сказываться не только неносредственно на процессе превращения органических остатков в нефть, но и на процессе десорбции и миграции ее, а также на процессах последующего превращения нефти. В некоторых условиях сульфат-восстанавливающие бактерии, а возможно, и другие анаэробные бактерии при помощи выделяемых ими кислот могут растворять карбонаты (известняки, доломиты и т. п.), при этом адсорбированная на этих породах нефть высвобождается и может передвигаться к подходящему резервуару. [c.396]


    Такое восстановление сульфатов может быть предотвращено, если ток электролиза привести в соответствие с расходом воды. При этом ток регулируется в зависимости от расхода воды при помощи контактных расходомеров или дифференциальных манометров в линиях подвода воды. При колебаниях расхода воды с регулярной закономерностью настройка тока может быть обеспечена и при помощи реле времени (часового механизма). Деятельность анаэробных бактерий может быть приостановлена также и применением соответствующей комбинации с инертными анодами [13], на которых происходит анодное выделение кислорода. Вообще при возможном восстановлении сульфатов необходимо позаботиться о достаточно эффективном удалении шлама. [c.412]

    Очистка бытовых и ливневых сточных вод производится в очистных сооружениях. Для очистки от взвешенных веществ применяются отстойники и песколовки, в которых взвеси осаждаются в результате отстаивания или медленного движения воды при небольшой глубине потока. Для очистки от фекалий и других биологических отбросов применяется биоочистка, заключающаяся либо в их окислении до углекислого газа и воды с помощью аэробных (потребляющих кислород) бактерий, содержащихся в активном иле, либо в переводе их в биогаз, содержащий простейшие углеводороды метанового ряда, с помощью анаэробных бактерий. Полученные осадки и активный ил иногда используются в качестве удобрений, но чаще уничтожаются с помощью сжигания в специальных печах с хорошей газоочисткой отходящих газов. Для доочистки воды используются такие физико-химические методы как коагуляция, адсорбция и фильтрация. [c.62]

    Вопрос о роли биохимического фактора в образовании нефти и газа получил освещение в исследованиях В. А. Соколова (1947, 1948, 1956 гг.), связанных с работами в области газовой съемки. С помощью разработанной для газовой съемки высокочувствительной газоаналитической аппаратуры им было установлено, что бактерии при анаэробном разложении органических веществ образуют только метан. Более тяжелые углеводороды при этом практически отсутствуют, нефть не образуется. Это было установлено как при лабораторных исследованиях при воздействии бактерий на различные органические вещества, так и при изучении состава болотных газов, т. е. газов биохимического, бактериального происхождения, образовавшихся в анаэробных условиях при воздействии бактерий на природный комплекс органических остатков. [c.205]


    Анаэробные микробиологические процессы осуществляются при минерализации как растворенных органических веществ, так и твердой фазы сточных вод. К твердой фазе относятся все вещества, осаждаемые в первичных отстойниках. Например, для сточных вод целлюлозно-бумажных предприятий наиболее характерной органической частью твердой фазы является целлюлозное волокно, которое может быть подвергнуто разложению при помощи анаэробных целлюлозоразрушающих бактерий. [c.179]

    Метод отбора анаэробных фототрофных бактерий основан на том (описанном выше) наблюдении, что пурпурные серные бактерии достигают иногда массового развития и в мелких водоемах, если вся поверхность воды покрыта плотным слоем ряски. С помощью фильтров, поглощающих коротковолновую часть спектра и пропускающих инфракрасные лучи, используемые лишь отдельными группами фототрофных бактерий, можно создать селективные условия для роста как зеленых серобактерий, так и пурпурных бактерий, содержащих бактериохлорофилл а или Ь. [c.382]

    Окончательное обезвреживание сточных вод, прошедших механическую или физико-химическую очистку, целесообразно производить биохимическим методом. Он заключается в переводе веществ-загрязнителей в безвредные продукты окисления с помощью бактерий и простейших микроорганизмов. Биохимический метод используется в основном для очистки сточных вод от органических веществ-загрязнителей. В промышленности известны два способа биохимической очистки сточных вод аэробный и анаэробный. [c.346]

    В последнее время, главным образом при выпуске сточных вод Б непосредственной близости от водохранилищ, используемых для отдыха и туризма, предусматривается так называемая третья степень очистки вслед за биохимической очисткой. Она состоит в выделении из сточной воды азот- и фосфорсодержащих соединений, которые, будучи биогенными элементами, могут вызвать усиленный рост водорослей в водохранилищах и тем самым нанести им вред. В процессе биохимической обработки фосфаты можно осаждать солями железа или алюминия. Нитратный азот можно удалить в промежуточной анаэробной установке с помощью бактерий, потребляющих кислород нитратов и выделяющих азот в форме N2 или N2 . Если возможно, то, разумеется, предпочитают всю сточную воду отвести, минуя водохранилища, с помощью обводного канала. [c.21]

    Нитрифицированный сток после отделения ила в отстойнике 6 самотеком направляется в денитрификатор 7, где происходит восстановление нитритов и нитратов до газообразного азота с помощью факультативных анаэробных бактерий  [c.28]

    Сбраживание — процесс минерализации органического вещества — применяется для стабилизации осадков и предотвращения их загнивания. Оно может осуществляться как при помощи анаэробных, так и аэробных бактерий. Изучению процесса анаэробного (метанового) сбраживания осадков в нашей стране посвящены работы К. А. Овсянниковой, Н. М. Поповой, А. А. Карпинского (Мосочиствод), Л. И. Гюнтер, В. В. Безе-нова (АКХ им. К. Д. Памфилова) и др. При сбраживании в анаэробных условиях органическое вещество распадается с образованием основных конечных продуктов — метана (СН4) и двуокиси углерода (СО2). Условно принято, что распад происходит в две фазы 1) гидролиз сложных органических веществ, в результате которого образуются жирные кислоты, спирты, альдегиды и др. 2) превращение этих промежуточных веществ в метан, углекислоту, а также бикарбонатные и карбонатные соли. [c.52]

    Дыхание бактерий происходит при помощи специальных дыхательных ферментов. По отношению к молекулярному кислороду (по типу дыхания) микробы разделяются на аэробов и анаэробов. Между строгими анаэробными и аэробными типами дыхания существуют и переходные формы. [c.45]

    Исчерпание молекулярного кислорода in situ приводит к замедлению тепловыделения, поступление кислорода за счет конвекции также соответственно снижается. Одновременно накопление диоксида углерода в течение стадии компостирования создает микроаэрофильные условия, которые приводят к увеличению числа сначала факультативных, а затем и облигатных анаэробов. В отличие от аэробного метаболизма, при котором минерализация отходов часто достигается с помощью одного вида бактерий, анаэробная биодеградация требует совместного метаболизма микроорганизмов разных видов, входящих в состав смешанной популяции. Эта популяция взаимодействующих друг с другом микроорганизмов способна использовать различные неорганические акцепторы электрона, часто в последовательности, соответствующей выделению энергии при этой реакции. Так как большинство бактерий нуждается в определенных акцепторах электронов, то эта последовательность приводит к существенным изменениям в составе микробной популяции. Виды, способные использовать более окисленные акцепторы, получают термодинамические и, следовательно, кинетические преимущества. [c.148]


    Важнейшим мероприятием является защита СОТС от биопоражения. Борьбу с микроорганизмами проводят с помощью биоцидных присадок (в основном соединения формальдегида и фенола), что требует существенных затрат рабочего времени и частой смены СОТС. Кроме того, установлена токсичность и отрицательное дерматологическое воздействие ряда биоцидов — пента-хлорфенола, меркаптобензтиазола, дитиокарбаматов. Технические пентахлорфенолы также могут содержать высокотоксичные хлор-производные диоксинов и фуранов. За рубежом иногда практикуют применение биостойких СОТС, в составе которых сульфонатные эмульгаторы, являющиеся питательной средой для анаэробных бактерий, заменены на несернистые соединения. В этом случае продолжительность жизни бактерий неопасна для СОТС (около двух дней) и при отсутствии внешних загрязнений количество [c.322]

    Электронтранспортная цепь водородных бактерий по составу аналогична митохондриальной (см. рис. 94). Большинство из них относится к облигатным аэробам. Однако среди облигатных аэробов преобладают виды, тяготеющие к низким концентрациям О2 в среде. Особенно чувствительны к О2 водородные бактерии, растущие хемолитоавтотрофно, а также в условиях фиксации молекулярного азота. Последнее объясняется инактивирующим действием молекулярного кислорода на гидрогеназу и нитрогеназу — ключевые ферменты метаболизма Hj и фиксации N2. Для некоторых водородных бактерий показана способность расти и в анаэробных условиях, используя в качестве конечного акцептора электронов вместо О2 нитраты, нитриты или окислы железа. Примером факультативно аэробных водородных бактерий может служить Para o us denitri ans, у которого в аэробных условиях работает электронтранспортная цепь, аналогичная митохондриальной, а в отсутствие О2 электроны с помощью соответствующих редуктаз переносятся на N0 и NOj, восстанавливая их до N2 (рис. 98, В). Однако большая часть факультативно аэробных водородных бактерий способна к восстановлению нитратов только до нитритов. [c.385]

    Получение органических кислот. Прежде чем рассмотреть конкретные биотехнологические процессы получения органических кислот, необходимо оговориться, что под рубрику "брожения" должно быть отнесено образование в анаэробных условиях только молочной и пропионовой кислот с помощью соответствующих бактерий, тогда как биосинтез лимонной, глюконовой, итако-новой и некоторых других органических кислот определенными микромицетами представляет собой разновидность того или иного окислительного (аэробного) процесса и поэтому отнесение их к брожениям является условным. [c.411]

    Колиформная группа бактерий определяется как совокупность аэробных и факультативно-анаэробных, неспорообразующих, грамотри-цательных палочек, вызывающих брожение лактозы с образованием газа в течение 48-часовой инкубации при 35°С. Первоначальный анализ на колиформы — предположительный, он основан на выделении газа из лактозы. Десятимиллилитровые порции водной пробы переносят с помощью стерильных пипеток в подготовленные бродильные трубки. Трубки содержат лактозу или лауриновую триптозу, бульон и перевернутые ампулы (сборники газа). Инокулированные трубки помещают в термостат с температурой 35 0,5°С. Рост бактерий с выделением газа, обнаруживаемого по появлению пузырьков в перевернутой ампуле, считается положительным анализом, показывающим, что колиформные бактерии могут присутствовать. Отрицательная реакция (отсутствие роста или рост без газа) исключает присутствие бактерий колиформной группы. [c.66]

    Нитрат восстанавливается в газообразный азот с помощью разнообразных факультативных бактерий в анаэробной среде. Источник органического углерода, обозначенный АНг в уравнении (13.5), необходим в качестве поставщика водорода и углерода для биосинтеза. Были проведены исследования большого количества органических веществ для выявления возможности их использования в качестве источника углерода. Эти вещества включают уксусную кислоту, ацетон, этанол, метанол и сахар. Во многих случаях предпочтение было отдано метанолу, так как он представляет собой наименее дорогостоящее синтетическое соединение, которое не увеличивает БПК очищенных сточных вод. Однако это ни в коей мере не означает, что обработка метанолом является дешевой подсчитано, что ее стоимость составляет половину всех затрат на денитрификацию. Потребность в метаноле для обычных бытовых сточных вод составляет около 60 мг/л. Рекомендуемая система денитрнфикации состоит из бассейна с мешалками, обеспечивающего вытеснительный тип потока, за которым следует отстойник для отделения и возврата ила. Перемешивание должно быть достаточным для поддержания микробиальных хлопьев во взвешенном состоянии, но без возникновения ненужной аэрации. Дентрификация может проводиться также в затопленном (анаэробном) фильтре однако имеется слишком мало данных производственных испытаний, которые мотли бы лечь в основу проектирования подобной установки. [c.373]

    Один из наиболее удачных примеров внеклеточного осаждения— перевод металлов в осадок путем осаждения сероводородом, образуемым сульфатредуцирующими бактериями. Эти бактерии обитают в анаэробных средах во всех частях земного шара (в озерных, океанических и некоторых речных осадках, (бескислородных почвах, болотах и т. п.), и с их помощью происходит сопряжение окисления органических веществ с восстановлением сульфатов до сульфидов  [c.207]

    Аэротаксис. У подвижных бактерий можно определить тип метаболизма (аэробный или анаэробный) по их аэротаксическим движениям и скоплению на определенных расстояниях от края покровного стекла. В слое бактерий, помещенных между предметным и покровным стеклами, аэрофильные бактерии скапливаются у края покровного стекла или в непосредственной близости от оказавшихся в препарате пузырьков воздуха это указывает на их потребность в аэробных условиях и на то, что необходимую энергию они получают за счет дыхания (рис, 2.40). Строго анаэробные бактерии будут скапливаться в центре. Микроаэрофильные бактерии, например некоторые псевдомонады и спириллы, будут держаться на определенном расстоянии от края. С помощью бактерий, проявляющих положительный аэротаксис, Энгельману удалось продемонстрировать выделение кислорода локально освещаемыми хлоропластами зеленой во-. доросли 8р1годуга. [c.69]

    О 2 для них токсичен см. в конце раздела 7.4). Факультативные анаэробы растут как в присутствии, так и в отсутствие Oj. Среди них следует различать два типа аэротолерантные молочнокисглые бактерии могут расти в присутствии атмосферного кислорода, но не способны его использовать-они получают энергию исключительно с помощью брожения другие факультативно-анаэробные бактерии (Enteroba teria eae) и многие дрожжи могут переключаться с дыхания (в присутствии О2) на брожение (в отсутствие О2). [c.178]

    Анаэробные бактерии окисляют пируват в ацетил-СоА двумя способами (см. реакции (2) и (3) в начале раздела 7.2.4). В реакции, катализируемой пируват ферредоксин-оксидоредуктазой (эта реакция свойственна, в частности, клостридиям), восстанавливается ферредоксин (Fd). Его окислительно-восстановительный потенциал очень низок ( ° = = —420мВ), поэтому с помощью специальной гидрогеназы-ферредоксин гНз-оксидоредуктазы-может освобождаться газообразный водород  [c.265]

    Нитратное дыхание восстановление нитрата до нитрита. Для целого ряда факультативно-анаэробных бактерий Enteroba ter, Es heri hia oli и др.) нитрат может служить конечным акцептором водорода в процессе транспорта электронов, поставляющем энергию. Этот вид нитратного дыхания отличается от денитрификации тем, что здесь только первая ступень, а именно восстановление нитрата до нитрита с помощью нитратредуктазы А, сопряжена с переносом электронов и преобразованием энергии  [c.308]

    Смешанные популяции почвенных бактерий в анаэробных условиях восстанавливают ионы Fe(III) до Fe(II). Если в среде помимо Fe(III) присутствуют также ионы нитрата и нитрита, то сначала восстанавливаются они (до нитрита и Nj, денитрификация) и лишь после этого-ионы Fe(III). Предполагают, что перенос электронов на трехвалентное железо осуществляет нитратредуктаза А. Поскольку восстановление нитрата сопряжено с окислительным фосфорилированием, не исключено, что и восстановление Ре(1П) может использоваться в процессе анаэробного дыхания . Окислительно-восстановительный потенциал E , который для пары Fe /Fe равен + 770 мВ, делает такую реакцию термодинамически возможной. Поскольку оксиды трехвалентного железа практиче-ски нерастворимы в воде, они сначала должны быть переведены в растворимую форму, способную проникать внутрь бактериальных клеток. Это, вероятно, осуществляется с помощью сидерофоров. Неудивительно, что в таких условиях наблюдается лишь медленный и незначительный рост бактерий. [c.324]

    Поскольку гематопорфирин в химическом отнощении рассматривался как двуоксисоединение филлопорфирина, то естественно было предложить, что для его получения нужно восстановить первое соединение. Ненцкий испытал действие диамида, фишеровской реакции замещения гидроксилов хлором при помощи РС15 с последующим обменом хлора на водород, а также действие биологических восстановителей — различных анаэробных бактерий. Однако все попытки непосредственного превращения одного вещества в другое оказались безуспешными. [c.171]

    При анаэробном распаде безазотистых органических веществ часто образуется горючий газ — метан. Образование его происходит при помощи особых микробов — метанообразуюцщх бактерий — и носит название метанового брожения. [c.51]

    Особенно ценно то, что о помощью ультрафильтрация можно быстро обработать большие количества разбавленных растворов и получить высококон-цен ированные препараты [9, 24]. Например, в медицине и биологии часто необходим быстрый количественный анализ следов анализируемых веществ. Ультрафильтрация позволяет быстро сконцентрировать раствор на несколько порядков и провести точные анализы вытяжек спинномозговой жидкости, плевральной и слизистых жидкостей, желудочного сока, венозной крови и т. п. Пропуская через полупровшцаемую мембрану раствор с микроорганизмами, в концентрате можно получить достаточное количество микробов, чтобы провести точные анализы. Поскольку ультрафильтрацию можно проводить практически при любых температурах, ее используют при исследовании анаэробных бактерий, живущих при повышенных температурах. [c.19]

    Поскольку живые организмы появились на Земле еще в то время, когда ее атмосфера была лишена кислорода, то целесообразной стала простейшая форма биологического механизма получения энергии ка химических веществ — анаэробный гликолиз. Организмы, существующие в анаэробных условиях и получающие таким способом необходимую им энергию, образуют два класса. Облигатные анаэробы — более примитивный класс — объединяют относительно небольшое количество бактерий и беспозвоночных, обитают, как правило, в условиях очень пониженного содержания кислорода или же полного его отсутствия. Клостридии, динитрифицирующие и метанообразующие бактерии — типичные представители облигатных анаэробов. Более многочисленным является класс факультативных анаэробов. Такие организмы в анаэробных условиях способны получать энергию, сбраживая глюкозу или другие вещества путем того же биологического механизма, что и облигатные анаэробы. Попадая же в аэробные условия, они осуществляют окислительный распад органических субстратов тем же анаэробным способом, после которого образовавшиеся продукты претерпевают окислительное превращение с помощью молекулярного кислорода. Поэтому у факультативных анаэробов превращение глюкозы в бескислородных условиях обязательной является первая стадия, после которой наступает аэробная фаза — собственно дыхание. Такая схема гликолитических процессов характерна не только для бактерий, дрожжей, мицелляриых грибов, но и для всех многоклеточных организмов, в том числе и аэробных клеток высших животных и растений. [c.176]

    Сбраживание—процесс минерализации органических веществ — применяется для стабилизации осадков и предотвращения их загнивания. Оно может осуществляться с помощью как анаэробных, так и аэробных бактерий. При сбраж1шании в анаэробных условиях органические вещества распадаются с образованием основных конечных продуктов — метана СН4 и углекислого газа СО2. Распад происходит в две фазы  [c.32]

    Восьмая группа — аэробные/микроаэрофильные подвижные спи-ральные/вибриоидные грамотрицательные бактерии. Клетки в виде вибрионов или спиралей, движутся с помощью полярных жгутиков. Аэробы или микроаэрофилы. Метаболизм дыхательный, некоторые способны к фумаратному или нитратному анаэробному дыханию. Большинство хемоорганотрофы, но некоторые представители способны расти автотрофно с молекулярным водородом. [c.324]


Смотреть страницы где упоминается термин Бактерии анаэробные их помощи: [c.162]    [c.334]    [c.315]    [c.317]    [c.163]    [c.411]    [c.36]    [c.129]    [c.135]    [c.197]    [c.77]    [c.16]    [c.75]    [c.107]    [c.300]    [c.315]    [c.322]    [c.508]    [c.302]    [c.129]    [c.344]    [c.154]   
Состав масляных фракций нефти и их анализ (1954) -- [ c.68 ]




ПОИСК







© 2024 chem21.info Реклама на сайте