Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поток ламинарный и турбулентный

    Характер потока (ламинарный, турбулентный) [c.24]

    Разработанные в ИАТ АН СССР образцы электромагнитных расходомеров оказались достаточно надежными и точными приборами. Их показания не зависят от механических свойств жидкости (вязкость, плотность) и от характера потока (ламинарный, турбулентный). Расход измеряется с точностью порядка +0,5%. [c.436]

    Пылевые камеры служат для удаления крупных частиц размером 50 мкм и более. Улавливание мелких частиц в таких камерах возможно лишь в том случае, если длина ее в 10—12 раз превышает высоту. Работа пылевых камер характеризуется отсутствием турбулентного режима движения потока (ламинарностью), равномерностью распределения поступающего воздуха по всему сечению входного отверстия, низкими скоростями в камере. [c.277]


    Для п-кратного повышения масштаба теплообменника с сохранением полного подобия следует в п раз увеличить его линейные размеры, но п-кратно уменьшить скорость потоков. Коэффициент теплопередачи в образце будет в п раз меньше, чем в модели. С технологической точки зрения это невыгодно. В практике используется преимущественно приближенное подобие. Как правило, приходится отказываться от геометрического подобия, заменяя его геометрическим родством, и гидродинамического подобия, заботясь лишь о том, чтобы -в модели и образце был одинаковый режим течения потоков (ламинарный или турбулентный). Следовательно, значения критерия Рейнольдса для модели и образца не будут одинаковы. Это относится и к критерию Нуссельта. [c.454]

    Х-4. Повторить решение примера Х-2, предположив, что поток ламинарный, а не турбулентный, как это принято в уравнении У-16. [c.352]

    Увеличение полноты испарения жидкостей при возрастающих скоростях потока воздуха можно объяснить тем, что в условиях больших скоростей потока решающим фактором полноты испарения является не скорость диффузии, а скорость конвективных токов и скорость образовавшихся вихрей в условиях перехода от ламинарного потока к турбулентному. Кроме того, с увеличением скорости потока воздуха (газа) нарушается устойчивость капли первоначального диаметра и возможно ее дробление на более мелкие (см. гл. IV и X). [c.109]

    Ответы а) реактор смешения б) реактор вытеснения независимо от того, является поток ламинарным или турбулентным. [c.132]

    Выбранные размеры должны были позволить исследовать о)гая-" ние скорости потока на скорость реакции и теплообмен в трех режимах— ламинарном, турбулентном и промежуточном. В качестве катализатора применялась медь, нанесенная на поверхность носителя. Диффузия в порах катализатора влияния на процесс не оказывала. После ориентировочного определения размеров аппарата следовало проверить, достаточен ли выбранный объем слоя и не может ли произойти нежелательный рост температуры. [c.179]

    Приведенная связь и характерна для ламинарного обтекания частицы потоком для турбулентного режима показатель стенени при е примерно вдвое ниже. — Прим. ред. [c.598]

    Рассматривая совместно уравнения диффузии для газовых и жидкостных систем и материального баланса, можно получить математическое описание массопередачи в многокомпонентных двухфазных системах. При этом следует учитывать состояние поверхности раздела фаз, определяемое гидродинамическими условиями взаимодействия потоков и их физическими свойствами. Если предположить, что на поверхности раздела фаз существуют ламинарные пленки, а в ядре потоков — развитый турбулентный режим, то основное сопротивление массопередаче будут оказывать диффузионные сопротивления жидкой и газовой пленок, находящихся на границе раздела фаз. В пределах каждой из этих пленок для описания диффузионного переноса вещества могут быть использованы уравнения (П1, 87), (П1, 94), определяющие диффузионный транспорт компонентов для каждой из фаз. [c.215]


    Теплоотдача при вынужденном поперечном омывании пучков труб. При поперечном обтекании одиночных труб и тем более пучков труб практически всегда имеет место турбулентный режим. Опыт показывает, что плавное, безотрывное обтекание одиночного цилиндра происходит только при очень малых значениях Re(Re<5). При поперечном обтекании переход от ламинарного потока к турбулентному не происходит резко при превышении критического значения Ре, как это имеет место для потока в трубе. [c.110]

Рис. 6-21. Движение твердого тела в жидкости а —ламинарный поток б —турбулентный поток. Рис. 6-21. <a href="/info/1647892">Движение твердого тела</a> в жидкости а —<a href="/info/4881">ламинарный поток</a> б —турбулентный поток.
    Если Ке < 2300 — движение потока ламинарное, при 2300 < Ке < <10 ООО — режим переходный, а при Ке > 10 ООО — движение турбулентное. [c.600]

    Для очпстки газа нужно, чтобы Тц > Тос- Однако на практике между электродами всегда имеется не ламинарный, а турбулентный поток, причем турбулентность усиливается действием электрического [c.391]

    Различают следующие режимы движения потоков ламинарный, когда Ке<2300 турбулентный, когда Ке>10 000 переходный, когда Ке изменяется в пределах 2300—10 000. Коэффициент теплоотдачи для каждого конкретного случая теплообмена находят в зависимости от режима движения теплообменивающихся потоков по формулам и номограммам, приведенным в специальной литературе по теплопередаче. [c.164]

    Очевидно, условия теплопередачи в турбулентной зоне потока значительно лучше, чем в ламинарном слое. С увеличением скорости потока ламинарная зона уменьшается (хотя она и имеет ничтожно малую толщину, однако оказывает основное сопротивление тепловому потоку). Уменьшаться при этом, конечно, должна и толщина X эквивалентного слоя. Коэффициент же теплоотдачи а и интенсивность теплового потока д будут увеличиваться. [c.317]

    Сопротивление трения, называемое также сопротивлением по длине, существует при движении реальной жидкости по всей длине трубопровода. На него оказывает влияние режим течения жидкости (ламинарный, турбулентный, степень развития турбулентности). Так, турбулентный поток, как отмечалось, характеризуется не только обычной, но и турбулентной вязкостью, которая зависит от гидродинамических условий и вызывает дополнительные потери энергии при движении жидкости. [c.85]

    Для ламинарного пограничного слоя как несжимаемой жидкости, так и сжимаемого газа при переменном давлении во внешнем потоке существуют различные методы расчета. Наиболее точные методы основываются на численном интегрировании дифференциальных уравнений и требуют применения вычислительных машин. Для турбулентного пограничного слоя несжимаемой жидкости разработаны приближенные, полуэмпирические методы расчета. В случае небольшого градиента давления во внешнем потоке расчет турбулентного пограничного слоя сжимаемой жидкости может быть произведен при условии, что влияние градиента давления учитывается лишь в интегральном соотношении количества движения (59). При этом считается, что профили скорости и температуры, а также зависимость напряжения трения от характерной толщины пограничного слоя имеют такой же вид, как и в случае обтекания плоской пластины. [c.338]

    Как известно, всякая жидкость при определенных условиях может течь ламинарным потоком при изменении этих условий можно превратить ламинарный поток в турбулентный. [c.74]

    О. Рейнольдс, исследуя течение жидкостей, показал, что ламинарный поток сменяется турбулентным, если безразмерный комплекс Ке начинает превышать 2320. Этот комп- [c.121]

    Переход от ламинарного течения к турбулентному происходит следующим образом. Предположим, что жидкость совершает некоторое устойчивое стационарное (иногда говорят установившееся) течение. Если скорость потока начинает возрастать, возрастает и Не. Тогда стационарное течение теряет устойчивость, появляются колебания отдельных частичек жидкости с конечной амплитудой и одной частотой. С возрастанием Ке (за счет скорости) возникают колебания других частичек с новыми амплитудами, частотами и начальными фазами. Наконец, за счет изменения скорости Ке достигает такого значения, что в жидкости кроме основного течения появляется бесконечное множество частичек, колеблющихся с различными амплитудами, частотами и начальными фазами. Тут и возникает собственно турбулентное течение. То значение Ке, при котором образовалось турбулентное течение, называется критическим и обозначается Ке . Напряжение сдвига, при котором возникает собственное турбулентное течение, т. е. напряжение, отделяющее ламинарный поток от турбулентного, называется пределом турбулентности и обозначается Р . [c.134]


    Очень часто гетерогенные реакции совершаются в потоке, т. е. жидкие или газовые реагенты омывают твердую поверхность. В этом случае скорость химической реакции зависит от скорости потока и его характера (ламинарный или турбулентный поток). Ламинарный поток — поток параллельных струй. Он не исключает диффузионных процессов, так как при этом на твердой стенке остается неподвижным слой жидкости большей или меньшей толщины. Турбулентный поток образует завихрения на стенке, и процесс диффузии заменяется вихревым переносом, значительно ускоряя процесс химического взаимодействия (коррозия трубопроводов, разгар сопл двигателей и т.д.). Кроме того, на ход реакции влияет угол направления потока с поверхностью, так как в зависимости от этого угла разрушаются защитные слои, если они возникают на поверхности. Таким образом, скорости химических реакций сильно зависят от внешних условий (размешивание). [c.131]

    Критерий Рейнольдса определяет характер потока вещества. При некотором критическом его значении происходит более или менее резкий переход от одного режима течения к другому. Так, при течений по трубам (d — внутренний диаметр трубы) при величинах Re, меньших 2100—2300, имеет место ламинарный поток, т.е. установившееся слоистое течение, в котором во всем сечении трубы скорости параллельны оси трубы. При более высоких значениях Re поток становится турбулентным, т. е. возникают хаотические завихрения. В случае внешнего обтекания (d — диаметр обтекаемых частиц) критическое значение числа Re лежит между 20 и 30. При значениях Re, меньших критического, устойчивый ламинарный режим восстанавливается после его нарушения каким-либо возмущением, например отдельными неровностями на стенках трубы или на поверхности обтекаемого тела. [c.258]

    На рис. 30.20 приведена принципиальная схема пламенного спектрофотометра. Одной из основных частей пламенного фотометра или спектрофотометра являются распылители и горелки. В пламенной фотометрии применяют горелки двух типов нераспыляющие (ламинарные) и распыляющие (турбулентные). Нераспыляющие горелки имеют внешнюю распылительную систему. Образуемые в ней аэрозоли вместе с газом-окислителем подаются в конденсационную камеру — смеситель, где смешиваются с горючим газом и затем попадают в пламя горелки. В комбинированных горелках-распылителях окислителя применяют кислород. Для стабилизации режима горения таких горелок необходимо увеличивать скорость истечения газов из сопла горелки, что делает поток газов турбулентным. В горелках такого типа анализируемый раствор втягивается газом-окислителем в капилляр и затем распыляется в реакционную зону пламени. Существенной частью нераспыляющих горелок являются их наконечники с тонкой защитной сеткой или щелевые, обеспечивающие равномерное горение пламени без проскока его в корпус горелки. [c.695]

    Очень часто гетерогенные реакции совершаются в потоке, т. е. жидкие или газовые реагенты омывают твердую поверхность. В этом случае скорость химической реакции зависит от скорости потока и его характера (ламинарный поток или турбулентный). [c.135]

    Потоки бывают турбулентными и ламинарными. Турбулентные потоки характеризуются беспорядочным движением частиц. Поля гидродинамических параметров таких потоков претерпевают случайные хаотические изменения во времени, имеющие характер нерегулярных колебаний (пульсаций) относительно некоторых осредненных значений параметров. По своей сущности турбулентные потоки являются неустановившимися. Их условно называют установившимися, если поля осредненных гидродинамических параметров не изменяются во времени. Если поля гидродинамических параметров потока не претерпевают случайных изменений во времени, то потоки называются ламинарными. [c.17]

    Переход ламинарного потока в турбулентный происходит при критическом значении числа Ре. Это значение для потоков в трубах [c.27]

    Пламя воспламенившегося топлива распространяется с различной скоростью. На скорость распространения пламени, кроме природы горючего, оказывают влияние такие факторы, как соотношение горючего и воздуха, предварительный нагрев газовоздушной смеси, характер потока смеси (ламинарный, турбулентный или переходный), каталитическое влияние стенок топочного пространства и другие факторы. [c.51]

    В двумерных пограничных слоях для измерений касательного напряжения чаще применяют простые пленочные датчики (например, DISA 55R47), в то время как в пространственных пограничных слоях популярны сдвоенные V-образные датчики Макроски [189], которые позволяют определять не только величину, но и направление вектора касательного напряжения [190]. Нередко они используются для качественного анализа таких явлений, как нестационарность потока, ламинарно-турбулентный переход и отрыв пограничного счоя [130, 191 —194]. Такие исследования можно проводить без предварительной калибровки датчика. Напротив, выполнение количественных измерений касательных напряжений возможно лишь при наличии тщательной калибровки [190, 195, 196]. [c.53]

    Ламинарный поток в прямых трубах может превратиться в турбулентный в местах изгибов трубопровода, а если же поток был турбулентным, Т0 вихреобразование в нем возрастет. Поэтому для траспортирова-ния нефти с водой выкидные линии должны быть короткими и по возможности прямыми, без фитингов. Отложения парафина в подъемных трубах и выкидных линиях сужают сечение трубопроводов и также способствуют диспергированию воды в нефти и образованию эмульсии. [c.19]

    Осборн Рейнольдс [83] в 1883 г. показал, что отклонения, полученные при определении вязкости способом истечения из капилляров и выражаю щиеся в кажущемся повышении вязкости, обусловливаются переходом линейного (ламинарного) потока в турбулентный (вихревой). Рейнольдс уста новил, что, чем больше внутреннее трение жидкости, тем слабее проявляется ее тенденция к турбулентному движению, причем в данной трубке жидкость,, обладающая меньшей кинематической вязкостью, образует завихрения при меньших скоростях, чем жидкость с большей кинематической вязкостью.. [c.252]

    Проводя аналогию между процессами теплопередачи и диффузии, приходится отметить, что в теплопередаче гидродинамическое подобие потоков полностью характеризуется критерием Рейнольдса только при вынужденном движении с хорошо развитой турбулентностью ири отсутствип такого движ ения, а также в потоках ламинарных и переходных режимов перенос тепла за счет естеств( Нпой конвенции характеризуется критерием Грасгофа. Аналогичный по смыслу критерий введен и для диффузионных процессов [c.34]

    Газовая смесь течет по каналам между гранулами катализатора. При этом происходит тепло- и массоперенос между частицами и потоком. В ядре потока массо- и теплообмен осуществляются, главным образом, за счет конвекции, так как поток обычно турбулентный.Вблизи поверхности имеется ламинарный пограничный слой, скорость газа в котором падает до нуля у поверхности гранулы. Транспорт реагентов и продуктов реакции через него в направлении, нохмальном к поверхности, осуществляется путем молекулярной диффузии, а тепла -теплопроводностью. Перенос тепла может происходить также посредством теплопроводности от частицу к частице через поверхность контакта и излучением меаду частшщми. [c.60]

    В компактных теплообменниках, использующих в качестве теплоносителя воздух при атмосферном давлении, ввиду малых гидравлических радиусов проходных сечений для воздуха и ограничений по мощности, затрачиваемой на прокачку, рабочий диапазон чисел Рейнольдса составляет 1000 ч- 5000. Другими словами, рабочая область — это переходная область от ламинарного течения к турбулентному. При работе в этой области лyчuJe всего выбирать такую геометрию теплообменной матрицы, которая вызывала бы некоторую турбулентность потока при малых числах Рейнольдса. Кривые рис. 11.7 свидетельствуют о том, что при использовании матрицы из сплющенных труб с рифлеными ребрами (поверхность № 9,68 — 0,870) нерегулярности геометрии вызывают в потоке воздуха турбулентность, достаточную для улучшения коэффициента теплоотдачи при числах Рейнольдса вплоть до 500, при которых коэффициенты теплоотдачи для плоских и рифленых ребер становятся одинаковыми (хотя фактор трения все еще несколько выше для рифленых ребер). Заметим также, что наклон кривых для фактора трения на рис. 11.7 становится более крутым прп числах Рейнольдса, меньших примерно 2000. Это означает, что хотя течение преимущественно является турбулентным, ламинарный подслой в пограничном слое утолщается по сравнению с развитым турбулентным течением. [c.214]

Рисунок 2.2. Распределение скоростей при различных режимах движешм а - ламинарный поток б - турбулентный поток Рисунок 2.2. <a href="/info/6255">Распределение скоростей</a> при различных режимах движешм а - <a href="/info/4881">ламинарный поток</a> б - турбулентный поток

Смотреть страницы где упоминается термин Поток ламинарный и турбулентный: [c.37]    [c.143]    [c.163]    [c.58]    [c.33]    [c.111]    [c.8]    [c.115]    [c.529]    [c.271]    [c.320]    [c.321]    [c.553]    [c.100]    [c.348]   
Смотреть главы в:

Теплопередача и теплообменники -> Поток ламинарный и турбулентный

Теплопередача и теплообменники -> Поток ламинарный и турбулентный




ПОИСК





Смотрите так же термины и статьи:

Поток ламинарный

Поток турбулентный



© 2024 chem21.info Реклама на сайте