Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Способы получения водорода для процессов гидрогенизации

    Но при проведении дальнейших исследований сразу же столкнулись с большими трудностями. Оказалось, что сера, которая содержится в углях в большем или меньшем количестве, при гидрогенизации под давлением превращается в сероводород, забирая при этом много водорода. Необходимо было разработать эффективный метод очистки угля от серы, а также выбрать наиболее дешевый способ получения водорода и его регенерации в процессе. К тому же надо подобрать аппаратуру, разработать оптимальные условия ее непрерывной работы и решить еще ряд важных технических вопросов. [c.16]


    При всем значении водорода в процессе гидрогенизации вопросы промышленного получения его для этого процесса играют подчиненную роль. Поэтому в данной книге они рассматриваются кратко, причем преимущественно описываются химические способы. Прочим способам получения водорода дается лишь общая [c.151]

    Способы получения водорода для процессов гидрогенизации [c.713]

    В процессе сажеобразования получают отходящие газы, качество и направления использования которых зависят во многом от способа получения сажи и ее качества. При получении сажи без доступа воздуха (термический способ получения сажи) газы не загрязнены побочными продуктами и содержат значительное количество водорода (85% объемн. Н2). Такие газы можно использовать для процессов гидрогенизации в нефтеперерабатывающей промышленности или для других химических процессов. При печных способах производства саж отходящие газы сильно загрязнены побочными продуктами, и ценность их как химического сырья существенно снижается. В табл. 22 приведен состав газов, образующихся при получении саж ПМ-75 и ПМ-100 из различных видов сырья. [c.240]

    На примере применения палладия видно, что способ приготовления катализатора играет существенную роль в получении тех или иных результатов гидрогенизации. С применением указанных катализаторов процесс может быть осуществлен и в газовой и в жидкой фазе. Результаты процесса в газовой фазе зависят не только от вида катализатора и способа его изготовления, но и от температуры, состава смеси, поступающей на гидрогенизацию (отношение винилацетилена к водороду), и скорости пропускания смеси. В случае применения катализатора на носителе соотношение между катализатором и носителем почти не влияет на результаты процесса. Так, при применении палладия на кизельгуре, взятом в пределах отношений 1 50 — 1 4060, выходы дивинила на взятый винилацетилен колебались в пределах 25—30%. [c.184]

    Сероводород является одной из самых нежелательных примесей в газе поскольку он ядовит и способен оказывать корродирующее действие на металлы. Кроме того, загрязнение газа сероводородом приводит к дезактивации и отравлению катализаторов, применяемых во многих процессах производства и использования водорода, как, например, при конверсии СО, конверсии углеводородов, синтезе аммиака, синтезе метанола, гидрогенизации пищевых жиров и т. д. Поэтому очистка газа от сероводорода предусматривается в большинстве схем получения водорода. Так, при производстве водорода или сицтез-газа методом газификации твердых или-жидких топлив (содержащих обычно в своем составе серу) очистке от НгЗ подлежит водяной газ, поскольку для дальнейшего получения из него водорода водяной газ должен быть направлен на каталитический процесс конверсии окиси углерода. При получении водорода из углеводородных газов — очистке от серы подвергается первичное газообразное сырье. При железо-паровом способе сероводород удаляется из целевого газа — технического водорода. Практически, из промышленных способов получения водорода только процесс электролиза воды не связан с очисткой газа от сероводорода. [c.316]


    Изложенные авторами материалы, посвященные гид-рогенизационным процессам, обработаны с теоретических позиций современной органической химии, химической технологии, прикладной макрокинетики и химической термодинамики. В предлагаемой монографии рассмотрены химическая термодинамика и превращение углеводородов при гидрогенизационной переработке нефтяного сырья. Описаны катализаторы и способы их производства, получение водорода, технологические основы ведения гидрогенизационных процессов и, наконец, наиболее важные их варианты гидроочистка, гидрокрекинг, гидродеалкилирование, гидрирование и гидроизомеризация. Специальная глава посвящена перспективам дальнейшего промышленного применения гидрогенизации в нефтепереработке. [c.5]

    ГИДРОГЕНИЗАЦИЯ (гидрирование), присоединение водорода к разл. в-вам. Наиб, распространена Г. нод действием мол. водорода, к-рая из-за высокой прочности связи Н—Н (435 кДж/моль) осуществляется, как правило, при высоких т-рах и давл. от >0,1 до 70 МПа в присут. катализатора. Важное практич. значение имеет Г. орг. соединений, содержащих кратные связи. Так, при Г. бен-аола получают циклогексан, нафталина — тетралии и декалип, масляного альдегида — бутанол. Г. оксида углерода — способ получения метанола и высокооктановых компонентов жидкого топлива. Присоед. водорода но связям С=С лежит в основе получения тв. жиров, является одной из осн. р-ций мн. процессов нефтепереработки, иапр. гидрокрекинга, каталитич. риформинга, гидроочистки. Г. может сопровождаться гид-рогенолизом, напр, при получении высших жирных спиртов из сложных эфиров. [c.131]

    Рассмотренные выше схемы переработки нефтяного, смоляного и угольного сырья (совмешенная двухступенчатая схема, одноступенчатая схема гидрогенизации, комбинированные схемы) позволяют повысить термический к. п. д. процесса, однако наиболее важной задачей при применении этих схем является изыскание путей повышения экономичности процессов. Первоочередными задачами являются а) разработка способов получения наиболее дешевого водорода и б) выпуск наряду с моторным топливом сырья и полупродуктов для синтеза ценных органических продуктов (ароматические углеводороды, фенолы, этилен, йутилен, этиловый и бутиловый спирты и т. п.). Выпуск различных х1имических продуктов совместно с моторным топливом должен значительно удешевить стоимость моторных и других спе-диальных видов жидкого топлива. [c.256]

    Впоследствии, (с канца 20-х — начала 30-х годов, процесс бергинизации перестал быть монопольным способом получения бензинов из угля. У него появился конкурент — синтез на основе окиеи углерода и водорода. Но и сейчас еще из дегтей, смол печей Лурги и т. д. получают тысячи тонн бензина по методу деструктивной гидрогенизации. [c.173]

    В процессе деструктивной гидрогенизации в больших количествах потребляется водород. Расход водорода па сырье составляет около 10—11% по весу от органической массы угля. На одну тонну бензина затрачивается 1—1,5 тыс. нм водорода при переработке жидкого топлива и 2,5—3 тыс. н-.и водорода при гидрогенизация углей. Стоимость водорода может достигать 50% и выпю от стоимости выпускаемого бензина. Поэтому проблема получения дешевого водорода 1тмеет громадное значение для производства искусственного жидкого топлива методом гидрогенизации. Для получения водорода применяются следующие способы  [c.465]

    К чистоте водорода предъявляются очень высокие требования. Лучше всего получать водород электролитическим способом для этого сконструированы многочисленные специализированные электролизеры. Для гидрогенизации 100 кг олеиновой кислоты требуется около 8 водорода и 5 квт-ч энергии (на получение электролитического водорода). Можно применять и водород, получаемый конверсией водяного газа на железном катализаторе, но такой водород необходимо подвергать тщательной очистке для удаления следов РНд, АзНд и НгЗ, отравляющих катализатор. Для контроля процесса гидрогенизации подвергают анализу отбираемые пробы, температура плавления продукта непрерывно повышается, а йодное число уменьшается. Важно также, чтобы тепло гидрированного масла передавалось в теплообменнике не-гидрированному маслу. По завершении гидрогенизации масло отделяют на фильтрпрессе от катализатора, который можно повторно использовать. Наиболее легко гидрируется касторовое масло, температура плавления которого может повыситься после гидрогенизации до 80° за ним следуют кунжутное, арахисовое, [c.401]

    Идеальным разрешением этого вопроса является полное удаление нежелательных составляющих — серы, азота и металлов без потери углеводородов, включающих эти элементы. Каталитическая гидрогенизация может служить превосходным способом проведения такой очистки в настоящее время она становится экономически целесообразной в связи с получением водорода в качестве отхода в процессах каталитического риформинга. Освобождение от нежелательных элементов сопровождается разрывом молекулярной цепи или связи в местах присоедипения атомов серы, азота или кислорода. Этот разрыв сопровождается присоединением водорода и образованием сероводорода, аммиака и воды. Коночный углеводородный продукт реакции обычно остается либо в виде алифатического углеводорода, либо алкильной грунпы, связанной с ароматическим или нафтеновым кольцом. Эти углеводородные продукты реакции обычно имеют больший молекулярный объем, чем исходные серу-, азот- или кислородсодержащие компоненты. Поэтому, а также вследствие разрыва незначительного числа углерод-углеродных связей объемный выход жидких продуктов гидрогенизации часто превышает 100% от исходного сырья. [c.236]


    Поэтому подвод водорода, способы его перемешивания и получения достаточно мелких пузырьков в жидкофазной гидрогенизации оказывают весьма существенное влияние на скорость и глубину процесса. Исследования, проведенные в этом направлении М. С. Немцовым, некоторые наши наблюдения роли перемешивания в жидкофазном процессе и ряд расчетов эффективности различных реакционных устройств жидкофазной гидрогенизации, проделанных И. Р. Черным, позволяют считать, что наилучшими агрегатами для жидкофазной гидрогенизации являются периодически действующие агрегаты, снабженные мешалкой с большим числом оборотов. Только колонны с большим отношением высоты к диаметру приближаются по эффективности к агрегатам с мешалкой. При этом удается достигнуть наилучшей диффузии реагирующих веществ к поверхности катализатора. Последние весьма обстоятельные исследования гидрирования триглицеридов, проведенные С. Ю. Елович и Г. М. Жабровой, позволят по аналогии представить процесс гидрогенизации в жидкой фазе в виде следующих стадий  [c.236]

    Большое значение приобретают химические способы получения перекиси водорода путем самоокисления органических соединений. В качестве таких соединений могут быть использованы гидрохиноны, гидразосоединения и некоторые другие. Известен способ получения из этил-антрагидрохинона, который при самоокислении дает этилантрахинон и перекись водорода. Полученную перекись водорода экстрагируют водой, а оставшийся после самоокисления раствор подвергают каталитической гидрогенизации. В результате снова образуется этилантра-гидрохинон. Процесс изображается схемой  [c.240]

    Гидрогенизация. Был предложен способ гидрогенизации смеси побочных продуктов при 100—350 °С и 70 ат (катализатор 2 4-N15 на А12О3). Для повышения селективности процесса, увеличения выхода целевого продукта и облегчения регенерации катализатора можно использовать алюмо-кобальт-молибденовый катализатор . В этом случае гидрогенизацию ведут при 310—360 °С, 50—70 ат, объемной скорости сырья 1,5 и подаче водорода 800 л на 1 л сырья. Расход водорода 2% от сырья. Смесь, направляемая на переработку, кроме дифенилолпропана и побочных продуктов содержала 0,5% воды, 9,6% хлорбензола и 6% фенола. Полученный гидрогенизат имел такой состав (в расчете только на побочные продукты, без хлорбензола и фенола)  [c.181]

    При спнтезе Фишера — Тропша образуются главным образом углеводороды с нормальной цепью. Это — его особое преимущество перед другими процессами прямого или непрямого превращения угля в моторное топливо. Так, способы прямой гидрогенизации угля, а также способ фирмы Экссон гидрогенизации угля в жидкой фазе путем переноса водорода от растворителя дают продукты с высоким содержанием ароматических углеводородов, являющиеся превосходным сырьем для получения бензина. Но для получения из них дизельного топлива необходимо еще проводить гидрогенизацию в жестких условиях. По способу фирмы Мобил уголь сначала газифицируют и затем из синтез-газа получают метанол, который с помощью специального цео-литного катализатора превращают в высококачественный бензин с большим содержанием ароматических углеводородов. Но дизельного топлива при этом не образуется. [c.197]

    Дальнейшая безостаточная переработка нефти может быть осуществлена лишь химической переработкой твердых нефтяных остатков с получением синтетических жидких топлив, энергетических или технологических газов, водорода и т.д. Для этих целей применимы давно используемые и отработанные технологические процессы переработки твердых горючих ископаемых (углей, сланцев, антрацитов). Из многообразия используемых в углепереработке способов (полукоксование, средне- и высокотемпературное коксование, газификация, гидрогенизация и др.) применительно к нефтепереработке более предпочтительны и эффективны процессы газификации. Именно посредством газификации твердых нефтяных остатков решаются в последние годы проблемы глубокой переработки нефти с получением высококачественных малосернистых моторных и котельных топлив на ряде НПЗ зарубежных стран (США, Западной Европы и Японии). При этом процессы газификации используют преимущественно для производства водорода, потребность в котором резко возрастает по мере повышения глубины переработки нефти. [c.520]

    Процесс Бергиуса. — Производство жидкого топлива путем деструктивной дегидрогенизации угля было разработано в Германии Бергиусом в период первой мировой войны и одно время находило широкое применение. По-видимому, уголь представляет собой сложное переплетение углеродных колец, которые при этом процессе расщепляются на фрагменты, гидрирующиеся до алифатических и циклических углеводородов. По такому способу из 1,5—2 т угля получается 1 т бензина. В ранних вариантах процесса порошкообразный уголь смешивали с тяжелыми погонами дегтя и добавляли 5% окиси железа (первоначально это делали для связывания имеющейся в угле серы, но в действительности оказалось, что она служит и катализатором). Пастообразную массу нагревали в присутствии водорода до 450—490 °С и давлении 200 ат. Путем введения более активных катализаторов (олово, свинец и др.) реакцию можно проводить в жидкой, а под конец в паровой фазе. Полученный продукт разделяют перегонкой на бензин (до 200 °С), газойль (200—300 °С) и остаток, который прибавляют к свежей порции угля и снова подвергают гидрогенизации. Типичная бензиновая фракция содержит 74% парафинов, 22% ароматических углеводородов, 4% олефинов. Как сообщалось, октановое число таких бензинов 75—80. [c.306]


Смотреть страницы где упоминается термин Способы получения водорода для процессов гидрогенизации: [c.185]    [c.185]    [c.234]    [c.171]    [c.256]    [c.403]    [c.256]   
Смотреть главы в:

Общая химическая технология топлива -> Способы получения водорода для процессов гидрогенизации




ПОИСК





Смотрите так же термины и статьи:

Водород получение

Схема установки конверсии газов. Процесс получения водорода путем термического разложения углеводородов. Другие способы получения водорода Катализаторы, применяемые в процессах гидрогенизации



© 2025 chem21.info Реклама на сайте