Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Смола коксовых печей

    В том числе смола коксовых печей—1101,3 тыс. т, смола вертикальных реторт непрерывного действия—1256,8 тыс. т, смола горизонтальных реторт и вертикальных периодического действия—574.9 тыс. т (1955 г.). [c.34]

    Судя по литературным данным, данный тип машины применяется для обработки смолы коксовых печей. [c.295]


    Из этой таблицы следует, что менее четверти всех фенолов из их общего незначительного количества составляли наиболее ценные низкокипящие фенолы. Несмотря на это, общий выход крезолов и ксиленолов, кипящих ниже 220°, в расчете на коксуемый уголь был выше, чем из смолы коксовых печей. [c.122]

    Анализ смолы коксовых печей (инден, индан, кумарон) и смолы, полученной при газификации в вертикальной реторте (поли-метилбензолы). [c.103]

    Отметим еще один факт, имеющий определенное значение при производстве кокса, а именно явление вспучивания углей в процессе коксования. Известно, что пары смолы выделяются из угля во время коксования при температуре 400—500° С. Большая часть из них уносится газами в направлении обогревательного простенка коксовой камеры, а меньшая часть конденсируется на зернах углей соседних слоев, которые находятся в противоположном направлении (в сторону оси камеры) и потому меньше нагреты. Эта последняя часть смолы тоже дистиллируется, но позднее, когда температура в данной зоне станет выше. Все происходит таким образом, будто бы пластический слой выталкивает перед собой некоторое количество смолы. Зерна угля, которые оказались пропитанными смолой, подвергаются, естественно, своего рода сольволизу при более низкой температуре, около 300° С, и, таким образом, начальная температура превращения угля в пластическое состояние в коксовой печи более низкая (по пластометрическим испытаниям угля в лабораторных условиях она должна составлять 350—370° С). В результате толщина пластического слоя увеличивается. [c.24]

    Промышленные продукты, называемые продуктами коксования угля, отличаются от летучих веществ, удаляемых при постепенном повышении температуры нагрева, поскольку при прохождении в коксовых печах через очень горячие зоны продукты преобразуются в результате крекинга. Смолы и газы, улавливаемые во время коксо- [c.78]

    Различие во вспучивании, отличающее лабораторные данные от данных, полученных при коксовании в больших масштабах, можно объяснить различными причинами гранулометрическими характеристиками углей, характером усадки, наличием или отсутствием на угольных зернах конденсированных, смол, различной степенью сопротивления выходу газов и т. д. Самой главной причиной, вероятно, является тот факт, что как в лабораторной установке, так и в коксовой печи уголь с одной стороны, и кокс, с другой, оказывают механическое сопротивление вспучиванию. [c.147]


    Что касается каменноугольного пека, то надо иметь в виду, что процесс крекирования в коксовой печи дополняется затем медленным изменением состава смолы в процессе ее перегонки, в результате которой увеличивается как молекулярная масса пека, так и содержание в нем нерастворимых фракций. [c.169]

    Устройство и работа коксовых печей. Коксование углей представляет собой высокотемпературный химический процесс. Реакции протекают сначала только в твердой фазе. По мере повышения температуры происходит образование газо- и парообразных продуктов, протекают сложные реакции внутри твердой и газовой фаз, а также происходит взаимодействие между ними. Основным фактором, определяющим протекание процесса коксования, является повышение температуры, ограниченное рядом факторов, среди которых следует указать на снижение выхода смолы и сырого бензола, изменение состава продуктов коксования, нарушение прочности огнеупорных материалов, используемых для кладки коксовых печей. [c.40]

    Прямой коксовый газ представляет собой сложную смесь газообразных и парообразных веществ. Помимо водорода, метана, этилена и других углеводородов, оксида и диоксида углерода, азота, в 1 м газа (при 0°С и 10 Па) содержится 80—130 г смолы, 8—13 г аммиака, 30—40 г бензольных углеводородов, б— 25 г сероводорода и других сернистых соединений, 0,5—1,5 г цианистого водорода, 250—450 г паров воды и твердых частиц. Газ выходит из коксовой печи при 700°С. Процесс разделения прямого коксового газа (см. рис. 16) начинается в газосборнике, в который интенсивно впрыскивается холодная надсмольная вода, и газ охлаждается примерно до 80°С, благодаря чему из него частично конденсируется смола. Одновременно в газосборнике из газа удаляются твердые частицы угля. Для конденсации смолы необходимо охлаждение газа до 20—30°С оно может производиться в холодильниках различной конструкции — трубчатых, оросительных, непосредственного смешения. В схеме, приведенной на рис. 16, используются трубчатые холодильники, в которых происходит конденсация паров воды и смолы. Понижение температуры газа способствует конденсации смолы и паров воды, увеличивает растворимость аммиака в конденсирующейся воде, что приводит к частичному поглощению аммиака с получением надсмольной воды. Смола и надсмольная вода из холодильника 2 стекают в сборник, где разделяются по плотности. В холодильниках не удается полностью сконденсировать смолу, так как она частично превращается в туман. Смоляной туман удаляется из коксового газа электростатическим осаждением в электрофильтрах, работающих при 60 000—70 000 В. [c.44]

    Тем не менее возможны изменения состава и выхода продуктов в зависимости от природы исходных углей, температурного режима коксования, конструкции коксовых печей. Ниже представлена связь выхода летучих веществ угля с количеством получаемых из него при коксовании сырого бензола и каменноугольной смолы [16, с. 27]  [c.151]

    При коксовании шихт с высоким содержанием газовых углей (и, значит, большим выходом летучих веществ) возможно и уменьшение выхода каменноугольной смолы. Это объясняется значительным снижением объема содержимого коксовой печи (усадкой) при коксовании. Увеличивается объем подсводового пространства и время пребывания паров продуктов коксования в зоне высоких температур, а следовательно, и глубина термического разложения. С увеличением температуры коксования повышается выход бензола и нафталина за счет сокращения выходов толуола, ксилола и гомологов нафталина. [c.151]

    Ршс.8.13. Принципиальная схема улавливания под давлением е использованием энергии сжатого газа 1 — коксовые печи 2 — газосборник 3 — блок первичного охлаждения 4 — сепаратор 5 — электрофильтр 6,7 — холодильники 8 — блок улавливания под авлением 9 — турбодетандер. К , К — I и II ступени компрессии II - привод внешний, ТД - турбодетандер а - прямой газ б -смола и конденсат в — охлажденный газ г — газ при 180°С - 0,3—0,4 МПа д - газ при 0 -0,4 МПа, 30-35°С < - газ при 0,8-1,2 МПа, 140°С ж - газ при 0,8-1,2 МПа, 35°С з - сжатый газ после улавливания и - газ при [c.295]

    Коксование каменного угля проводится с целью получения кокса для металлургической промышленности. Оно ведется в коксовых печах или коксовых батареях при 1000—1250°С и сопровождается отгонкой летучих продуктов в виде коксового газа и жидкого конденсата, состоящего из водного аммиака и каменноугольной смолы. Суммарное количество отгоняющихся веществ зависит от сорта каменного угля, но обычно составляет около 20% от его массы. [c.8]

    На коксовых печах, где брони имеют стык по оси простенков, об увеличении зазора свидетельствует выделение смолы и газа на стыках броней под анкерными колоннами. Просачивающийся газ загорается, что влечет за собой перегрев и деформацию анкерных колонн. [c.112]


    Теплотехнические расчеты коксовых печей и определение их КПД осуществляют на основе материального и теплового балансов печей. Данные балансы составляют, как правило, на одну тонну угольной щихты. В уравнение материального баланса включают продукты, полученные в процессе кокс, газ, смолу, бензол, аммиак, водяные пары. [c.127]

    На металлургических заводах всегда имеется в распоряжении свое так называемое отбросное топливо — коксовый и доменный газы и смола. Обычно другое топливо. не покупается, за исключением угля для котельных. В случае забастовки или промышленной депрессии в коксовых печах сжигают природный газ. если газовые компании располагают его запасом. [c.337]

    Значение примесей парафинов в толуоле. Толуол, получаемый на коксобензольных заводах, почти совершенно свободен от парафинов. В очень редких случаях в толуоле из коксовых печей содержится до 6,5% парафинов. Однако толуол, получавшийся в Англии в период империалистической войны 1914—1918 гг. из газовой смолы, особенно тех заводов, которые пользовались вертикальными ретортами, содержал до 4—5% и больше парафинов. Такой то- [c.118]

    Процесс коксования заключается в сухой перегонке каменного угля при высоких температурах. Каменный уголь загружают в специальные закрытые камеры—коксовые печи и нагревают до температуры выше 1000 °С. При этом образуются летучие вещества (газо- и парообразные продукты, пары воды и аммиак) и твердый нелетучий остаток—кокс. Процесс коксования протекает в несколько стадий. При температуре порядка 100 °С уголь подсушивается далее—до 600 °С органическая масса угля начинает постепенно разлагаться на летучие продукты и твердый остаток— полукокс, еще содержащий значительное количество летучих веществ. Процесс, заканчивающийся на этой стадии, называется полукоксованием. При дальнейшем повышении температуры из полукокса выделяются остатки летучих веществ, и он превращается в кокс. В процессе коксования уголь подвергается наиболее глубоким изменениям. Летучие продукты проходят при этом зону печи, нагретую до 1000 °С, и органическая часть их (пары смолы и более легких углеводородов) претерпевает глубокое разложение, происходит так называемая ароматизация летучих. [c.86]

    Коксование 634, 792 Коксовая смола — см. Каменноугольная смола Коксовые печи 635 Коксохимическое производство 636 Коламин — см. Этаноламины Коламинфосфатиды 638 Колеманит 371 [c.533]

    Особая сложность химического состава заключается в разнообразии составляющих смолу молекул (которые, кроме ароматики, содержат заметную долю алифатических и нафтеновых соединений) с различной степенью замешенности в этих молекулах. Этим она отличается от смол коксовых печей, которые подвергаются в коксовой камере высокотемпературному крекингу. Для одного и того же угля выход смолы при высокотемпературном коксовании составляет около 3—3,5%, в то время как при низкотемпературном коксовании он повышается до 8—10%. [c.140]

    N2, 1,9% НгО. Выход продуктов коксования на 1 т влажного угля следующий 71% кокса, 270 коксового газа, 2,3% смолы, 0,7% бензола, 0,2% аммиака (в виде аммиачной воды). Влажность загруженного в коксовую печь угля 10%, При расчете пренебречь расходом тепла на процесс коксования тег[лопотери в окружающее пространство принять разными 107о-Температура отходящих продуктов горения 250° С, температура коксового газа и продуктов коксования 750° С, Теплоемкость паров бензола принять равной 0,4 ккал/кг, теплоемкость смолы — 0,6 ккал/кг. [c.322]

    Различие в выходе летучих веществ при медленном и быстром нагревах зависит по существу от коксования битуминозных продуктов типа первичных смол внутри зерен угля (до перехода в паровую фазу) и тем значительнее, чем медленнее нагрев. Следовательно, нужно полагать, что угли, которые дают наибольший выход смолы (при одинаковых выходах летучих веществ это чаще всего наиболее вспучивающиеся угли), обладают составом летучих веществ, особенно чувствительным к скорости нагрева. Именно это наблюдается, например, в ряде саарско-лотарингских углей. Сильно вспучивающиеся жирные угли А, у которых показатель выхода летучих веществ (при очень быстром нагреве) не отличается на большую величину от того же показателя в некоторых менее вспучивающихся хчирных углях В, дают выход кокса заметно более высокий при быстром нагреве в коксовых печах. [c.79]

    Выше мы видели, что в процессе пиролиза при температуре примерно 400° С образуются битуминозные летучие вещества типа первичных смол и что они сами начинают пиролпзоваться прежде, чем покинуть угольное зерно и перейти в газовую фазу. Эта начальная фаза крекинга сравнительно активна в коксовой печи, потому что скорость поднятия температуры -здесь небольшая, а пластический слой не подвергается воздействию мощных потоков проходящих газов. Ниже мы будем говорить только о крекинге, следующем за переходом соединений в газовую фазу. [c.167]

    Разделение воды, смолы и фусов — сложных коллоидных систем, образованных частицами угольной шихты, мелкодисперсными сажистыми частицами и частицами кокса, вынесенными иэ печей, со смолой в большой мере зависит от режима работы печей (крупность шихты, режимы загрузки, система бездымной загрузки, режим работы газосборника), так как при значительном количестве взвешенных частиц и высокой плотности смолы образуются очень прочные эмульсии вода-смола, а в некоторых случаях и стабильные обращенные эмульсии (вода в смоле). Образование особо обводненной смолы и тем более обращенных эмульсий — признак крайне низкого уровня эксплуатации коксовых печей. Выше (см. рис. 8.4) показана тесная связь условий взаимного разделения воды, смолы и фусов с надежностью работы практически всех переделов коксохимического производства. [c.212]

    Дисперсные частицы способствуют стабилизаанн эмулы ий воды в смоле, поэтому наиболее устойчивые дисперсные системы образуются в высокопиролизован-ных смолах. Эти смолы образуются при плохой организации обогрева коксовых печей, недостаточной загрузке камер коксования и отличаются повышенной плотностью (1210—1240 кг/м ), высоким выходом пека, низким содержанием фенолов и большим количеством aj-фракции (до 5—10 %). При подготовке смолы к дистилляции стремятся возможно более тщательно отстаивать воду. Для нормальной работы нужно, чтобы смола после подготовки содержала не более 4 % воды и 0,1 % ЭОЛЫ. Отстаивание воды позволяет уменьшить количество солей в смоле и тем самым уменьшает опасность коррозии. На ряде заводов смолу даже специально промывают конденсатором, чтобы уменьшить содержание солей и разрушить эмульсии. Для улучшения отстаивания воды возможно применение специальных методов — центрифугирования, отстаивания под давлением, которые позволяют отделить значительную часть оставшихся фусов и (отстаивание под давлением) уменьшить содержание воды до 0,8-1,0%. [c.321]

    Пек - анизотропная жидкость, обладающая определенной внутренней структурой. Отличаясь высокой реакционной способностью, компоненты пека при нагревании способны к реакциям поликонденсации с накоплением высокомолекулярных продуктов уплотнения. Групповой состав пеков определяется по количеству веществ, нерастворимых в тех пли иных растворителях, взятых в значительном избытке. Компоненты а,-и а2-фракций находятся в смоле и пеке в виде коллоидных частиц. а]-Составляющую в последнее время подразделяют на две или даже три составных части. а -Составляющая представляет собой взвешенные частицы и продукты конденсации, принесенные со смолой, а а -составляюшая образуется при перегонке смолы и образовании каменноугольного пека в результате процессов термической конденсации. В свою очередь а -составляющая может быть разделена на вещества, вынесенные из коксовой печи (пыль — твердые частицы) и на высокомолекулярные соединения, образовавшиеся при конденсации в газовой фазе. Их соотношение определяют косвенными способами. [c.346]

    Помимо использования электродного пека в качестве связующего, он применяется для производства пекового кокса в пекококсовых цехах, которые включают отделение пекоподготовки, блоки коксовых печей и отделение охлаждения газа и конденсации смолы. [c.74]

    На большинстве заводов применяют мокрое тушение пекового кокса. При коксовании высокотемператуфного пека получают -67 мас.% пекового кокса, 23 - 28 мас.% смолы и 7 - 8 мас.% газа. Летучие продукты, образующиеся при коксовании пека, как и в обычных коксовых печах, охлаждаются водой в стояке и газосборнике. Г аз после сепаратора поступает в холодильники непосредственного действия, орошаемые водой и далее нагнетателем передается в газопровод коксового газа. Конденсирующаяся пековая смола пода- [c.74]

    Объективной закономерностью является значительное снижение степени пиролизованности смолы, связанное 1)со снижением общей выработки кокса и, следовательно, со снижением жесткостю> режима работы и увеличением времени оборота коксовых печей и 2)с выводом из эксплуатации изношенного печного фонда. Это может быть проиллюстрировано данными таблицы 1, в которой приведены показатели качества смолы, поступающей на переработку на ЗСМК (по сути, это данные по качеству усредненной смолы всех сибирских заводов). [c.124]

    Каменноугольный пек изготавливается из каменноугольной смолы, получаемой при производстве металлургического кокса. Показатели качества смолы определяются составом угольной шихты и режимами коксования. Основные изменения в структуре и свойствах смолы, наблюдаемые в последние гох(Ы, связаны с интенсификацией режимов коксования, температурой подсво-дового пространства в коксовых печах, которое для смолы, идущей для приготовления связующего пека, не должно быть выше 800 С, и вовлечением в состав шихты малометаморфизирован-ных углей. Указанные обстоятельства вызвали рост плотности смолы с 1160-1180 до 1190-1230 кг/м , содержания 0 -фракции с [c.100]

    В наилучших условиях, требующихся для производства светильного газа высокой теплотворной способности, нз самых лучших образцов каменного угля получается мягкий кокс невысокого качества. В условиях же, соответствующих образованию кокса, достаточно твердого для использования его при восстановлении окиси железа, светильный газ получается более низкого качества. В экономическом отношении высококачественный кокс выгоднее всего производить в коксовых печах с улавливанием побочных продуктов устройство печей позволяет получать каменноугольную смолу, аммиак и светильный газ, причем часть газа испол1ззуют как топливо для тех же печей, а остаток газа смешивают с природным или водяным газом и направляют в городской газопровод. Очищенный светильный газ, получающийся приблизительно, в количестве 0,317 на т каменного угля, состоит главным образом из водорода (52 объемн. %) и метана (32%) с небольшой примесью окиси углерода (4—9%), двуокиси углерода (2%), азота (4—5%), а также этилена и других олефинов (3—4%). Средняя теплотворная способность светильного газа 143,6 ккал/м . В процессе очистки гаэ пропускают через скрубберы для улавливания смолы и аммиака и через поглотители для выделения легкого масла, которое получается в количестве, достигающем 14,5 л на 1 г каменного угля, и содержит 60% бензола, 15% толуола, ксилолы и нафталин. При перегонке каменноугольной смолы получают дополнительно еще небольшое количество сравнительно легкого масла, но в современных условиях ОольШ  [c.152]

    LПриродными источниками толуола являются каченный уголь фть. Из каменного угля толуол получают путем обработки каменноугольной смолы, продукта сухой перегонки и улавливания газов коксовых печей. Из нефти толуол добывают при непосредственной разгонке ее или чаще всего с целью обогащеи1ГЯ первых погонов нефти ароматическими углеводородами эти погоны (керосиновая фракция) предварительно подвергают пиролизу. [c.81]

    К п получают в динасоаых камерных печах, отличающихся от обычных коксовых камер высокой герметизацией кладки, более низким расположением линии обогрева простенков по отношению к своду, большими размерами газоотводящих отверстий, устройствами для загрузки пека, подачи пара и газов для удаления графита из камер и др Высокоплавкий (т размягч 135-150°С) пек порционно или непрерывно загружают в печи в нагретом (жидком) состоянии При нагр пека до 450-550 °С происходят дистилляция легкокипящих фракций, разложение осн массы пека с образованием газообразных продуктов и тяжелых углеродсодержащих остатков, затвердевание их и образование т наз полукокса При его дальнейшем нагревании выше 550 °С выделяются остаточные летучие а-аа (гл обр Hj), что приводит к образованию в массе кокса усадочных трещин Процесс заканчивается, когда т-ра а центре коксового пирога достигает 900-1000 С, при этом прекращается усадка и кокс отходит от стенок печи Летучие продукты коксования в виде парогазовой смеси отводятся а газосборник, где охлаждаются Конденсат-т наз коксопековая смола, к-рая под действием воздуха снова превращ в кам -уг пек Г аз после очистки используется, напр, для обогрева коксовых печей Раскаленный кокс выталкивается из печи и затем тушится (обычно водой, реже инертным газом, напр Nj) так же, как кам -уг кокс Для получения К п применяют также метод замедленного коксования кам -уг пека а необогреааемых камерах [c.425]

    КОКСОВАНИЕ, разложение при высокой т-ре без доступа воздуха твердых и жидких горючих ископаемых с образованием летучих в-в и твердого остатка - кокса Последний находит широкое применение а разл отраслях народного хозяйства (см Кокс каменноугольный, Кокс нефтяной, Кокс пековый) Сырье для К-в осн каменный уголь, в значительно меньших масштабах перерабатывают др горючие ископаемые, а также высококипящие остаточные продукты дистилляции нефти (см ниже), кам -уг пек и т д К. камеииого угля-переработка его при 900-1100°С с целью получения кам -уг кокса, коксового газа, каменноугольной смолы и др продуктов Предварительно обогащенные (отделенные от минер примесей), измельченные до зерен размером преим менее 3 мм и тщательно перемешанные угли (шихту) направляют в башню, из к-рой с помощью загрузочных вагонов через спец люки подают а раскаленные коксовые печи - горизонтальные аппараты щелевидного типа (см рис) Обогреват простенки (вертикальные каналы) печей выложены из динасового огнеупорного кирпича Преимуществ применение нашли печи с камерами шириной 400-500 мм, высотой 4 7 м, длиной 12 16 м, полезным объемом 20-50 Неск десятков печей (обычно 60-70) компонуют в единую систему - коксовую батарею, обслуживаемую общим комплектом [c.425]

    Состав каменноугольной смолы зависит от качр.ствг углей, рс жима коксования и конструкций применяемых коксовых печей Типичный фракционгилй состав каменноугольной смолы приведе в табл. 15. [c.78]

    При всех трех методах горячий газ из реторт или коксовых печей предварительно охлаждают прямым контактом с большим количеством над-смольпой воды и слабого водного аммиака, подаваемыми непосредствепно в газосборник. При этом газы охлаждаются примерно до 75—100° С и удаляется большая часть связанного аммиака (около 30% аммиака, первоначально присутствовавшего в газе) наряду с основным количеством смолы. Эта жидкость, называемая промывочной, после отстаивания большей части смолы в декантере снова возвращается в газосборник. Часть промывочной жидкости непрерывно выводится из цикла, соединяется с другими жидкостными потоками со сравнительно низкой концентрацией аммиака (так называемая слабая аммиачная вода) и дополнительно перерабатывается для выделения аммиака. Жидкость, выводимая из цикла, восполняется добавкой конденсата из холодильников (трубчатых или смешения), через которые проходит предварительно охлажденный газ после газосборника. Схемы дальнейшей очистки газа и жидкостных потоков при всех трех методах неодинаковы. [c.230]

    Прямой м е т о д. Этот метод [14] устраняет необходимость предварительного выделения аммиака из водных растворов для его превращения в сульфат аммония. Горячие газы из реторт или коксовых печей при температуре, превышающей точку конденсации водяных наров, непосредственно пропускаются через концентрированную серную кислоту. Одновременно с абсорбцией аммиака из газа удаляется значительная часть смолы, что приводит к загрязнению не только сульфата аммония, но и кислоты и самой смолы. Кроме того, содержащийся в газе хлористый аммоний разлагается концентрированной серной кислотой, и выделяющийся хлористый водород вызывает чрезвычайно сильную коррозию оборудования. Частично эти недостатки процесса удается устранить включением весьма сложной системы выделения смолы. Однако некоторые трудности оказались практически непреодолимыми, вследствие чего рассматриваемый метод использован лишь на немногочисленных установках. Опубликовано [15, 16] детальное сравнение этого метода с косвенным и полупрямым процессами. [c.232]

    В отличие от высокотемпературной смола вертикальных реторт, температурный режим в которых отличается от режима камерных коксовых печей, содержит большое количество ароматических и гидроароматических углеводородов с длинными парафиновыми боковыми цепями. Их содержание снижается от 207о в низкокипящих фракциях до 5—10 /о в более высококинящих. Для этих смол характерно высокое содержание (20—30%) гидроксилзамещенных углеводородов. Основными компонептами сложной смеси фенолов явлвнотся ксиленолы, метилэтил- и диэтилфенолы, двухатомные фенолы, например, пирокатехин и резорцин, и нх гомологи. [c.35]

    Первой ступенью в процессе улавливания летучих продуктов коксования (рис. 33) является охлаждение газа и конденсация паров с выделением смолы и надсмольной воды. Чтобы сразу быстро охладить газ, в газосборник 2 и в стояки, по которым в него поступает газ из камер коксовой печи, вбрызгивают надсмольную воду. Благодаря этому температура газа понижается от 700 С (температура на выходе газа из камер) до 80—85 °С. В газосбор-нике конденсируется большая часть смолы и удаляются угольная и коксовая пыль, сажа и другие механические примеси (так называемые фусы). [c.93]


Смотреть страницы где упоминается термин Смола коксовых печей: [c.409]    [c.428]    [c.78]    [c.230]    [c.36]    [c.94]   
Газовая хроматография - Библиографический указатель отечественной и зарубежной литературы (1952-1960) (1962) -- [ c.0 ]




ПОИСК







© 2024 chem21.info Реклама на сайте