Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окисление и жаростойкость алюминия

    Защита металлов от газовой коррозии может быть достигнута различными способами защитные покрытия, уменьщение агрессивности газовой среды и др. Наиболее эффективным способом защиты от окисления при высоких температурах является жаростойкое легирование, т. е. введение в состав сплава компонентов, повышающих его жаростойкость. Основными элементами, способствующими созданию защитного слоя на обычных железоуглеродистых, никелевых и других сплавах, являются хром, алюминий и кремний. Эти элементы окисляются при высоких температурах на воздухе легче, чем легируемый металл, и образуют хорошую защитную окалину. [c.146]


    Для защиты от газовой коррозии используют в основном жаростойкие сплавы. Так, например, чтобы уменьшить скорость окисления углеродистой стали при 900 °С в три раза, достаточно ввести в нее 3,5 % алюминия в четыре раза — 5,5 % алюминия. Кроме жаростойкого легирования используется метод, заключающийся в применении защитных атмосфер. Газовая среда не должна содержать окислителей, находящихся в контакте со сталью, и восстановителей в контакте с медью. В качестве защитной атмосферы при термической обработке и сварке применяют инертные газы — аргон и азот. Также можно осуществлять термическую обработку сталей в атмосфере, содержащей азот, водород и оксид углерода. Сварка титановых и алюминиевомагниевых сплавов должна осуществляться в защитной среде аргона. [c.52]

    Сопротивление окислению жаростойких сплавов при высоких температурах, как было указано ранее, обусловлено образованием на поверхности металла защитной хорошо сцепленной с ним окисной пленки. Существует большое количество легированных сталей, обладающих высокой жаростойкостью в сочетании с жаропрочностью при нагреве до 1200° С и выше. Основными легирующими элементами, придающими жаростойкость железным сплавам, являются хром, кремний, алюминий, никель я некоторые другие, добавка которых обусловливается характером и составом газовой среды, необходимостью улучшения механических и других свойств сплава (см. гл. X). [c.234]

    ОКИСЛЕНИЕ И ЖАРОСТОЙКОСТЬ АЛЮМИНИЯ [c.67]

    Экспериментально было установлено наличие защитного слоя оксида, преимущественно образованного легирующим компонентом сплава (хрома или алюминия) для ряда жаростойких железных сплавов. На рис. 3.19 показано значительное снижение скорости окисления железа от концентрации легирующей добавки — алюминия. [c.62]

    Таким образом хромали характеризуются более высоким содержанием хрома. Примесь алюминия более эффективно повышает жаростойкость железного сплава, чем добавка хрома (рис. 7.10). Железный сплав с 7-10 % А1 (без хрома) уже устойчив к окислению на воздухе при температурах до 1100-1200 °С, приближаясь по жаростойкости к нихрому с 80 % N1 и 20 % Сг. [c.193]

    Жаростойкость тантала повышают легированием никелем, молибденом (до 15%), вольфрамом (до 50%) (рис. 14.21). Добавки V и ЫЬ до 15 % приводят к двукратному повышению жаростойкости тантала. Эффективны добавки металлов 1У-а группы. Положительное влияние циркония усиливается при повышении температуры до 1100 °С, Сплавы И —Та, богатые гафнием, устойчивы кратковременно к окислению при 2000 °С. Наиболее высокой жаростойкостью обладают тройные и многокомпонентные сплавы тантала (см. табл. 14,9). Тантал, легированный хромом и никелем (суммарное.содержание Сг, N1 15 %), окисляется со скоростью, меньшей, чем хром. Наибольшей жаростойкостью в этой системе обладает сплав Та—7,5 Сг—5Ы1. Наивысшей жаростойкостью обладают сплавы тантал - металл 1У-а группы, легированные хромом, алюминием, кремнием, бериллием, молибденом. [c.430]


    Жаростойкое легирование, т. е. введение в состав сплава компонентов, понижающих скорость окисления металла. Такими компонентами для сплавов на железной основе прежде всего являются хром, алюминий и кремний. [c.37]

    Уравнение (IV. 44) может найти применение при изучении диффузионных покрытий. Насыщение поверхности металлов алюминием, хромом, кремнием, никелем, т. е. довольно окалиностойкими материалами, позволяет существенно повысить жаростойкость изделий. В данном случае как бы создается на поверхности основного металла слой жаростойкого сплава, который и защищает деталь от окисления. Теория создания жаростойких сплавов и механизм их окисления хорошо разработаны качественно и количественно [14, 20— 26]. [c.189]

    Влияние легирующих элементов на относительную скорость окисления стали приведено на рис. 6. Хром, алюминий и кремний сильно замедляют процесс окисления стали, что связано с образованием пленок с высокими защитными свойствами. При содержании 30% Сг, до 10% А1, до 5%Si стали имеют высокую жаростойкость. Легирование стали титаном, медью, кобальтом и бериллием вызывает гораздо меньшее повышение жа- [c.23]

    Применение покрытий, пигментированных алюминиевой- пудрой, позволяет при изготовлении оборудования, эксплуатирующегося при 500 °С, заменить нержавеющую сталь обычной углеродистой сталью. Это обусловлено тем, что при температуре, близкой к 500 °С, алюминий, содержащийся в покрытии, металлизирует сталь, создавая на ней жаростойкий поверхностный слой, предохраняющий ее от окисления. Кроме того, такие покрытия улучшают распределение тепла на поверхности, препятствуя перегреву и окислению сварных швов . [c.180]

    Для повышения сопротивления железоуглеродистых сталей окислению при высоких температурах в них вводятся различные добавки. К таким добавкам прежде всего относятся алюминий, кремний, хром и никель — металлы, сами обладающие свойством покрываться хорошими защитными пленками. Влияние этих элементов на жаростойкость показано на рис. 12. [c.20]

    Для упрочнения серебра используют оксиды кадмия, алюминия, меди, никеля, олова, индия, свинца, цинка, сурьмы, титана и др. Дисперсно-упрочненные композиты на основе серебра получают методами порошковой металлургии и избирательным внутренним окислением сплавов А . Взаи юдействие компонентов ДКМ отсутствует вплоть до температуры диссоциации оксида. Оксидами кадмия упрочняют также псевдосплавы серебро-никель. Известны электроконтактные материалы с высокими износо- и жаростойкостью на основе серебра, упрочненные совместно оксидами кадмия, олова, индия, цинка. По,лучают их путем внутреннего окисления сложнолегированных сплавов серебра. Другой способ получения несколько различных сплавов серебра размалывают, механически смешивают, прессуют, спекают и избирательно окисляют. [c.122]

    Алюминий резко снижает скорость окисления. Добавка 1% А1 приводит к снижению скорости окисления на 40 7о- Алюминиевая бронза (с 8%А1) не обнаруживает каких-либо изменений при 800° С. Бериллий действует аналогично алюминию, но сильнее добавка 2,4% Ве позволяет получить практически жаростойкий сплав (рис, 3,33, 6), В отношении образования окалины латунный сплав с 20% 2п примерно соответствует бронзе с 1% Ве 1% бериллие-вой. Латунь с 40% 2п несколько менее стойка. Окалина состоит исключительно из окиси цинка. [c.273]

    Большой практический интерес представляет повышение жаростойкости сплавов других металлов при введении в них алюминия. О влиянии алюминия на жаростойкость железных сплавов уже говорилось выше. Добавление алюминия в латунь, а также в оловянистую бронзу уменьшает их окисление при высоких температурах. [c.23]

    Окисление металлов при их нагревании приносит промышленности большие убытки. Вследствие того что стойкость обычных железных сплавов против газовой коррозии крайне невелика, изделия, предназначаемые для работы при высоких температурах, изготовляют из специальных жаростойких сплавов или, если возмо жно, наносят покрытия, повышающие устойчивость обычных железных сплавов против действия газовой коррозии. Повышение жаростойкости металла достигается насыщением его поверхностного слоя алюминием (алитирование). кремнием (силицирование), хромом (термохромирование). Практикуются также процессы насыщения сплавами алюминий-кремний, хром-кремний. Для защиты стальных изделий от атмосферной коррозии применяют насыщение их поверхности цинком. [c.153]

    Хром, алюминий и кремний (см. рис. 98) сильно замедляют окисление железа из-за образования высокозащитных окисных пленок. Эти элементы широко применяют для легирования стали в целях повышения ее жаростойкости. Хром, введенный в сталь в количествах до 30%, значительно повышает жаростойкость, но высокохромистые стали являются ферритными и трудно поддаются термообработке в отличие от мартенситных и полуферритных низкохромистых сталей. Алюминий и кремний, которые вводят в сталь в количестве соот- [c.137]


    При образовании неоднофазной окалины следует учитывать свойства оксидов легирующих элементов. При значительном легировании ниобия цирконием и титаном, имеющими большее, чем ниобий, сродство к кислороду, происходит преимущественное образование оксида легирующего металла, а как более высокозарядный ион, уменьшает концентрацию анионных вакансий в пленке. Скорость окисления сплава при этом уменьшается (табл. 14.9). Из данных, приведенных в таблице, видно, что немногие элементы ухудшают жаростойкость ниобия. Перспективно легирование алюминием, титаном и хромом. Л и]рование цирконием в количестве >20 % повышает жаростойкость ниобия в связи с образованием фазы 62г02-КЬз05, [c.427]

    С повышением температуры довольно (Н1Л1.И0 возрастает скорость коррозии никеля н сплавов па его основе, а также сталей, в состав которых ои входит. Особенно опасно то, что окисление никеля протекает преимущественно по границам зерен. В результате реакции образуется легкоплавкая. эвтектика Ni—NiS, плавящаяся при температуре 625 С, поэтому разрупи ние металла часто происходит по границам зерен. При температурах >6ПГ С предпочтение следует отла-пать хромистым сталям. Лобавка алюминия в количестве 3—4% положительно влияет на жаростойкость сталей в среде 50 . Золото при высоких температурлх не подвергается воздействию газов, содержащих SO2. [c.844]

    Сплавы Сг—А1—Ре обладают исключительно высокой жаростойкостью, благодаря устойчивости к окислению Сг и А1. Например, сплав 30 % Сг, 5 % А1, 0,5 % Si (торговое название мегапир) стоек на воздухе до 1300 °С. Аналогичной стойкостью обладает и сплав 24 % Сг, 5,5 % А1, 2 % Со (торговое название кантал А). Эти сплавы применяют, в частности, для изготовления спиралей и других деталей электронагревательных приборов и печей. К недостаткам этих сплавов относятся низкая жаропрочность и склонность к охрупчиванию при комнатной температуре после продолжительного нагревания на воздухе. Охрупчивание вызвано, в частности, образованием нитрида алюминия. По этой причине спирали в нагревательных элементах должны быть фиксированы, а для беспрепятственного термического расширения и сжатия их обычно гофрируют. [c.207]

    Жаростойкость — стойкость по отношению к газовой коррозии при высоких температурах. Жаропрочность — свойства конструкционного материала сохранять высокую механическую прочность при значительном повышении температуры. Основное средство защиты металлов от газовой коррозии — легирование такими компонентами, которые улучшают свойства защитных пленок, образующихся при окислении металла. Для стали такими элементами являются хром, алюминий, кремний. Эти элементы при высоких температурах окисляются энергичнее, чем железо, и образуют при этом плотные защитные пленки оксидов. Хром и кремний улучшают также жаропрочность сталей. Стали, легированные 4—9% хрома, молибденом или кремнием, применяют, например, в парогенераторо- и турбостроении. Сплав, содержащий 9—12% хрома, применяется для изготовления лопаток газовых турбин, деталей реактивных двигателей, в производстве двигателей внутреннего сгорания и т. п. [c.218]

    Селективное окисление, происходящее в процессе формирования окалины и подокалины, может приводить к изменению химического состава подокалины, крайним проявлением которого может стать растворение упрочняющих выделений. В восстанавливающих средах, например, может иметь место потеря межузельного углерода в результате обезуглероживания или даже растворение упрочняющих карбидов, что ухудшает характеристики ползучести [58, 103, 159]. Как было показано, опасность таких процессов особенно велика в среде жидкого натрия, используемого в ядерных установках [160]. Потеря приповерхностных выделений при эскпо-зиции в окислительных средах особенно характерна для таких сплавов, где алюминий, являясь сильным оксидобразующнм элементом, определяет и прочность сплава, входя в состав упрочняющих интерметаллических фаз. Например, основной упрочняющей фазой жаростойких суперсплавов служит Ы1зА1 (фаза -у ) и обеднение приповерхностных слоев материала этой фазой в результате испытаний на ползучесть бывает очень заметным (см. рис. [c.33]

    Общий характер влияния алюминия на жаростойкость сплавов никель-хром при 1200°С показан па рис. 35. Результаты получены путем изотермического окисления образцов в атмосфере очищенного кислорода в течение 10 ч (данные A. . Тумарева и Л.А. Панюшина). Из рис. 35 видно, что алюминий повышает жаростой-костьо Однако судить о количествен- [c.63]

    Высокая жаростойкость Ре—Сг—Л1 сплавов достижима лишь в том случае, когда вся поверхность сплава покрыта слоем окиси алюминия. Однако под влиянием ряда факторов нагреватели могут быть подвержены высокотемпературной я.к., которая представляет собой локальное интенсивное окисление металла с образованием преимущественно окислов железа РезОз и Рбз04. Окислы язвы состоят из двух частей -наружной, выступающей над поверхностью металла, и внутренней, находящейся в металле (рис. 61). Внешне язвы выглядят в виде бугорков, имеющих обычно черный цвет, иногда с бурым или серым оттенком, образуются также язвы большой протяженности - до нескольких десятков миллиметров. [c.93]

    ЖАРОСТОЙКАЯ СТАЛЬ - сталь, отличаюЕцаяся жаростойкостью. Стойка против интенсивного окисления на воздухе или в других газовых средах при т-ре выше 550° С. Используется с конца 19 в. Жаростойкость обусловлена наличием на поверхности Ж. с. плотной и тонкой пленки окислов, достаточно прочно сцепленной с осн. металлом. Пленка состоит преим. из окислов легирующих элементов — хрома, кремния и алюминия, термодинамически более стойких, чем окислы железа. Содержание этих элементов определяет класс Ж. с. (табл. 1). Хром, являясь осн. легирующим элементом Ж. с., повышает жаростойкость пропорционально увеличению его содержания (рис.). Никель способствует образованию аустенитной структуры (см. Аустенит). Стали с такой структурой легче обрабатывать, они отличаются хорошими мех. св-вами. Добавки кремния (более 2%) и алюминия (более 0,5%) ухудшают мех. св-ва стали. Титан, ниобий и тантал связывают углерод в карбиды, предотвращая выделение карбидов хрома, которое обедняет близлежащую металлическую основу хромом и приводит к уменьшению жаростойкости. Молибден и вольфрам (в небольших количествах) незначительно повышают жаростойкость, но уменьшают склонность стали к ползучести при высокой т-ре. Если молибдена содержится более 3—4%, жаростойкость стали резко ухудшается из-за образования нестойких и рыхлых его окислов. Церий и бе- [c.420]

    Сплавы ниобия и тантала. Поскольку МЬаОб — полупроводник п-типа с анионными вакансиями, можно было бы полагать, что добавка в ниобий более высоковалентного металла (в области параболического окисления) должна привести к снижению скорости окисления. Однако анализ изменения концентрации и подвижности анионных вакансий в МЬдОа при легировании титаном, ванадием, хромом и алюминием показывает, что в связи с высокой концентрацией дефектов, отличающейся лишь на два порядка от концентрации свободных электронов в металлах, и возможным изменением подвижности при изменении их концентрации подход к жаростойкому легированию ниобия с позиции теории Вагнера неприменим. Априорный выбор добавок в данном случае затруднен. Важную роль играет размер иона легирующего элемента. При образова НИИ однофазной окалины легирование ниобия металлами, образующими ионы меньшего, чем ион N5 , размера, может привести к сжатию ячейки на основе ЫЬзОь, снижению объемного отношения и торможению диффузии ионов О в оксиде. Например, легирование ниобия цирконием, имеющим больший, чем у радиус иона (0,79и 0,69-10 м соответственно), ускоряет окисление ниобия, а V, Мо и Сг (с радиусом ионов 0,59 0,62 и 0,63-10 м соответственно) — замедляют. [c.427]

    ИЛИ азота, ухудшающего механические свойства сплава. С этой точки зрения полезно легирование металлами, снижающими растворимость кислорода и азота, напри мер, молибденом и вольфрамом. Максимальной жаростой костью обладают сложнолегированные сплавы. Напри мер, повышение жаростойкости сплавов НЬ—Т1 дости гают легированием их алюминием, вольфрамом, хромом цирконием, никелем и иттрием. Сплав на основе ниобия содержащий Т — 25, А1 — 8, V — 0,2 %, окисляется при 1100 °С со скоростью 0,15 мг-см -ч . Скорость окисления при 1100 °С сплава, содержащего Т1 — 20, W— 10, N1 — 4%, равна 1,4 мг-см >ч" . Таким образом, достигнуто примерно 100-кратное увеличение жаростойкости ниобия. Однако жаростойкое легирование часто приводит к снижению жаропрочных свойств. Этого недостатка лишены сплавы ЫЬ——Т1, дополнительное легирование которых металлами группы железа снижает скорость окисления при 1200 °С до 2,7 мг-см -4" . К этой [c.429]

    Магний чрезвычайно легок, и это свойство могло бы сделать его прекрасным конструкционным материалом, по, увы — чистый магний мягок и непрочен. Поэтому конструкторы используют магний в виде сплавов его с другими металлами. Особенно широко применяются сплавы магния с алюминием, цинком и марганцем. Каждый из компонентов вносит свой па11 в общие свойства алюми-ний и цинк увеличивают прочность сплава, марганец повышает его антикоррозионную стойкость. Ну, а магний Магний придает сплаву легкость — детали из магниевого сплава на 20—30% легче алюминиевых и на 50—75% — чугунных и стальных. Есть немало элементов, которые улучшают магниевые сплавы, повышают их жаростойкость и пластичность, делают устойчивее к окислению. Это литий, бериллий, кальций, церий, кадмий, титан и. другие. [c.187]

    Возможности комбинирования металлов и других элементов в составах покрытий в последние годы резко расширились (см. гл. 3). Особенно большое внимание уделяется созданию сложных жаростойких покрытий. Среди двойных металлических систем наибольший интерес в этом отношении представляют А1—N1, Л1—Со, А1—Сг, А1—V, А1—Т1, А1—2г, Сг—N1, Сг—Т1, Сг—Р(1, Сг-Ке, а среди тройных — Сг—А1—Т1, Сг—А1—N1, Сг—А1—Ре. Покрытия на основе этих систем наиболее приемлемы для защиты легированных сталей и никелевых сплавов. Их наносят обычно диффузионными способами. Соответствующие диффузионные покрытия описаны в многочисленной литературе [51, 143]. Например, диффузионная вакуумная металлизация хромом и алюминием оправдывает себя как эффективное средство увеличения надежности и долговечности лопаток турбин, работающих при 750 °С [144]. На поверхности таких покрытий при эксплуатации образуются шпинели NiAl204 и Ы1Сг204, которые защищают сплав от окисления и разрушения. [c.100]


Смотреть страницы где упоминается термин Окисление и жаростойкость алюминия: [c.141]    [c.279]    [c.236]    [c.54]    [c.247]    [c.379]    [c.428]    [c.632]    [c.528]    [c.797]    [c.426]    [c.38]    [c.38]    [c.156]    [c.236]    [c.338]    [c.504]    [c.188]   
Смотреть главы в:

Курс коррозии и защиты металлов -> Окисление и жаростойкость алюминия




ПОИСК





Смотрите так же термины и статьи:

Жаростойкость



© 2024 chem21.info Реклама на сайте