Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Газовое и другие состояния

    Глава 3. Газовое и другие состояния 123 [c.123]

    ГАЗОВОЕ И ДРУГИЕ СОСТОЯНИЯ 1. Газовое состояние [c.123]

    Активностью данного газа (или компонента газовой смеси) называется такая величина, которая при подстановке ее вместо концентрации в соотношения, выражающее связь различных термодинамических свойств идеального газа с его концентрацией, делает эти соотношения применимыми к данному газу (или компоненту газовой смеси). Активность зависит от температуры и давления газа, а для компонентов газовой смеси — также и от состава смеси. Активность характеризует, таким образом, как бы активную концентрацию газа. Активность обозначается обычно через а и используется при изучении свойств не только газообразного, но и других состояний веществ. [c.235]


    Г Л А В А 3 ГАЗОВОЕ И ДРУГИЕ СОСТОЯНИЯ [c.155]

    Г Л А В А 3. ГАЗОВОЕ И ДРУГИЕ СОСТОЯНИЯ. ГАЗОВЫЕ РАСТВОРЫ [c.149]

    Как уже указывалось выше, межмолекулярное взаимодействие в газах проявляется в меньшей степени, чем в других состояниях вещества. Поэтому при давлениях, достаточно удаленных от критического, парциальные молярные величины 8" и VI могут быть заменены значениями и для чистого компонента в газовой фазе. В этом случае к рассматриваемой системе полностью применимы закономерности, рассмотренные в главе П. [c.98]

    Можно найти известную аналогию в развитии теории растворов электролитов и теории газового агрегатного состояния. В том и другом случаях первоначально предполагалось, что система ведет себя подобно идеальной и что между образующими ее частицами нет сил взаимодействия. Приложение полученных на основе таких представлений законов к реальным системам приводило к значительным расхождениям между теорией и опытом. В связи с этим вместо простого уравнения газового состояния [c.35]

    Возможность присутствия газа, помимо кислорода и ксенона, в качестве продукта реакции гидролиза проверяли анализом газовой смеси по массе. Для этой цели образец выводили из системы до того, как газ вступал в контакт со ртутью или с другими восстановителями. Можно видеть, что в опытах 5 и 6 отношение атомов иода к атомам ксенона равно 5,9 и 6,0, тогда как в опытах 2 и 7 это отношение равно соответственно 6,6 и 6,3. Трудно определить пределы экспериментальных ошибок в этих опытах, но состояние окисления, равное 6, по-видимому, действительно таково. Однако эти измерения не исключают возможность другого состояния окисления, менее устойчивого. [c.200]

    Гомогенным называется такой процесс, в котором участвуют топливо и окислитель, находящиеся в одинаковом (газовом) агрегатном состоянии и образующие друг с другом однородную смесь. Характерной особенностью гомогенных реакций является то, что они могут протекать в любой точке объема реакционной системы. В отличие от этого гетерогенные процессы сосредоточены в пространственно ограниченных реакционных зонах. Гетерогенным является, в частности, взаимодействие топлива и окислителя, находящихся в разных агрегатных состояниях. Например, реакционная зона при горении твердого топлива в воздухе располагается на поверхности, разделяющей твердую и газовую фазы. Скорость гетерогенных процессов нередко сильнее зависит от интенсивности доставки к реакционной поверхности кислорода и отвода от нее продуктов сгорания (СО2 и т.п.), чем от скорости протекающей на поверхности химической реакции. [c.156]


    Как мы видели, силы притяжения существуют не только между атомами, но и между молекулами. Это подтверждается тем, что взаимодействие молекул часто приводит к образованию других, более сложных молекул. Кроме того, газообразные вещества при соответствующих условиях переходят в жидкое и твердое агрегатное состояние. Любое вещество в какой-то мере растворимо в другом веществе, что опять-таки свидетельствует о взаимодействии. Во всех этих случаях обычно наблюдается взаимная координация взаимодействующих частиц, которую можно определить как комплексообразование. Оно имеет место, например, при взаимодействии молекул с ионами, противоположно заряженных ионов и молекул друг с другом и т. п. Так, образующиеся при растворении солей в воде ионы гидратированы, т. е. вокруг них координированы молекулы растворителя. Взаимная координация молекул наблюдается при переходе вещества из газового в жидкое и твердое состояния и пр. [c.94]

    Характерная особенность газового состояния заключается в том, что молекулы (атомы) газа не удерживаются вместе, а свободно движутся в объеме, значительно превышающем объем самих частиц. Силы межмолекулярного взаимодействия проявляются, когда молекулы подходят друг к другу на достаточно близкое расстояние. Слабое межмолекулярное взаимодействие обусловливает малую плотность газов и их основные характерные свойства — стремление к безграничному расширению и способность оказывать давление на стенки сосуда, препятствующие этому стремлению. [c.123]

    Аналогичное выражение для константы получается для всех реакций, в которых только один из компонентов находится в газовом состоянии, например для процессов термической диссоциации кри-1 таллических оксидов, сульфидов, гидроксидов, кристаллогидратов и других соединений. [c.190]

    Для вывода основных дифференциальных уравнений фильтрации упругой жидкости в упругой пористой среде необходимо воспользоваться уравнением неразрывности потока, уравнениями состояния пористой среды и насыщающей ее жидкости и уравнениями движения. При этом используем подход, развитый в гл. 2, в соответствии с которым в качестве уравнения состояния среды и жидкости используются упрощенные эмпирические соотношения. Как показывают результаты лабораторных экспериментов на образцах пород-коллекторов, а также опыт разработки месторождений, в ряде случаев наряду с изменением пористости вследствие происходящих деформаций существенны изменения проницаемости пластов. Особенно это относится к глубокозалегающим нефтяным и газовым месторождениям. Это вызывает необходимость учета в фильтрационных расчетах как при упругом, так и при других режимах фильтрации изменений проницаемости с изменением пластового давления (см. гл. 2). Развитию теории упругого режима с учетом этого фактора посвящено большое число исследований. Однако изложение этого раздела в более общей постановке, предусматривающей также введение в уравнения фильтрации зависимости проницаемости от давления, заметно усложнит изложение, поэтому авторы считают целесообразным, сохранив традиционный подход, рекомендовать читателям обратиться к монографиям, посвященным этому вопросу. [c.134]

    При расчетах притока газированной жидкости к скважинам часто используют метод последовательной смены стационарных состояний. В основе этого метода и некоторых других приближенных методов расчета неустановившейся фильтрации газированной нефти лежит допущение о постоянстве в каждый момент времени газового фактора [c.298]

    В газовой фазе доля более напряженных конформаций, в том числе и некоторых г-конформаций для Сб-дегидроциклизации, тем меньше, чем выше их напряженность. Как уже указывалось (см. разд. 1.2), конформации одного вещества более или менее быстро переходят друг в друга, однако при постоянной температуре их соотношение не меняется. На поверхности катализатора из-за адсорбции молекулы могут оказаться временно зафиксированными в /"-конформации, т. е. при таком расположении главной углеводородной цепи, которое энергетически невыгодно, но зато пространственно наиболее благоприятно для образования переходного состояния. В то же время, чем более напряжена г-конформация, тем менее прочно ее фиксирование, короче продолжительность жизни на поверхности катализатора, а следовательно, меньше вероятность прореагировать. Соответственно, меньше будет предэкспоненциальный член уравнения Аррениуса. Если же при этом реакция идет ио нулевому порядку и энергии активации для Сб-дегидроциклизации разных углеводородов одинаковы, то между значениями энергии перехода от обычных к г-кон-формациям и выходами продуктов реакции должна быть антибатная зависимость. При сопоставлении таких энергий перехода, вычисленных А. Л. Либерманом из конформационных данных, с выходами циклопентанов при Сб-дегидроциклизации, найденными авторами книги экспериментально, действительно обнаружилась ожидаемая антибатная зависимость  [c.213]


    В функции газоспасательной службы входит контроль за соблюдением правил безопасности при газоопасных ремонтно-технических и технологических работах, выполнение в случае необходимости своими силами газоопасных работ, требующих применения изолирующих кислородных приборов, проверка наличия, соответствия, исправности, а также ремонт всего газоспасательного оснащения, находящегося в газоспасательном подразделении и на объектах предприятия участие в составлении перечня газо-, взрыво- и пожароопасных мест и работ, а также планов ликвидации аварий и в проведении учебных тревог контроль состояния газовоздушной среды в производственных помещениях и в других местах, где возможно образование и распространение вредных веществ в опасных концентрациях участие в разработке мероприятий по снижению концентрации вредных паров, газов и пыли в производственных зонах изучение газоопасных объектов предприятия и причин возникновения загазованности для предупреждения газовой опасности инструктаж и обучение производственного персонала правилам безопасного ведения работ в газоопасных местах, способам пользования газозащитными средствами и основным приемам спасения пострадавших при авариях и несчастных случаях контроль за допуском к работе в газоопасных местах только обученного цехового персонала, снабженного соответствующими газозащитными средствами, а также за исправностью и правильным применением этих средств широкая массово-разъяснительная работа среди рабочих, служащих и инженерно-технических работников обслуживаемого предприятия в области газобезопасности участие в комиссиях по приемке в эксплуатацию газоопасных объектов при окончании их строительства или ремонта обучение членов добровольной газоспасательной дружины газоспасательному делу, методам и приемам ведения аварийно-спасательных работ. [c.126]

    Можно найти известную аналогию в развитии теории растворов электролитов и теории газового агрегатного состояния. В том и другом случаях первоначально предполагалось, что система ведет себя подобно идеальной и что между образующимися частицами нет сил взаимодействия. Приложение полученных на основе таких представлений законов к реальным системам приводило к значительным расхождениям между теорией и опытом. В связи с этим для газов вместо простого уравнгния газового состояния рУ = ЯТ предлагались другие, более сложные, в которых так или иначе учитывались силы взаимодействия между частицами. Одним из них было уравнение Ван-дер-Ваальса [c.73]

    Процессы нефтегазообразования характеризуются определенной периодичностью во времени и в пространстве отложения, содержащие значительные запасы нефти и газа, чередуются с комплексами пород, в которых очень мало скоплений УВ или они полностью отсутствуют. Как правило, в каждой нефтегазоносной провинции такие чередования (отложения со скоплением УВ и без них) повторяются неоднократно, что свидетельствует о цикличности процессов нефтегазообразования, т. е. о наличии в регионе нескольких циклов нефтегазообразования. Нами вслед за Н.А. Еременко и С.П. Максимовым было применено понятие - цикл нефтегазообразования, под которым понимается совокупность взаимосвязанных процессов образования нефти накопления материнского ОВ и осадках и его преобразование в нефтяные и газовые УВ, формирование залежей нефти и газа и их разрушение. Так же как и в геологических явлениях, цикл нефтегазообразования — процесс необратимый — от прошлого к будущему. Цикл нефтегазообразования, как и любой другой цикл, включает несколько стадий (возникновение, формирование, устойчивое бытие, переход в другое состояние) или, как мы назвали, этапов. С.П. Максимов, Н.А. Еременко, Т.А. Ботнева в цикле нефтегазообразования выделяют четыре этапа  [c.103]

    Нафевание жидкости, находящейся в равновесии с паром, при некоторых довольно строгих условиях, накладываемых на температуру, давление и объем системы, может приводить к внезапному исчезновению фаницы между жидкой и газовой фазой. Состояние вещества (или смеси веществ), возникающее при исчезновении различия между фазами, находящимися в равновесии друг с другом (например, между жидкостью и ее паром, между двумя жидкостями и др.), называют критическим состоянием. На фазовой диаграмме в этой точке кривая сосуществования жидкости и пара обрывается. Точка на термодинамической диаграмме, соответствующая критическому состоянию вещества, называется критической точкой. Критические состояния вещества свойственны не только системам с равновесием типа жидкость — ее насыщенный пар , но иногда также системам с равновесием несмешивающихся жидкостей и даже аморфнь[х или кристаллических твердых фаз. [c.169]

    Сопоставление этого результата с уравнением (VI. 1) показывает, что RT п a = i 1п pJPT) и, следовательно, через активность выражается работа изотермического обратимого переноса одного моля компонента из стандартного состояния в другое состояние, в котором давление пара компонента равно при условии, что газовая фаза идеальна. [c.110]

    Газы не имеют собственной поверхности и собственного объема, они занимают полностью емкость того сосуда, в который они помещены. Газы обладают неограниченной способностью к расщирению при повыщении температуры и понижении давления. Расстояние между молекулами в газах во много раз больше размеров самих молекул, а межмолекулярные взаимодействия слабы и молекулы движутся практически независимо друг от друга. Расположение частиц в газовой системе почти г/олностью хаотично и энтропия газа намного выше энтропии вещества в других состояниях. [c.10]

    Если переход из одного агрегатного состояния в другое осуществляется при пересечении критической изотермы между точками /С и С, то поверхность раздела фаз не образуется, т. е. можно непрерывно превранхать жидкость в пар или пар в жидкость. Это обстоятельство, доказывающее, что жидкое и газовое агрегатные состояния — только очень отдаленные друг от друга состояния жидкости, отметил еще Эндрьюс (1889). [c.17]

    Концепция идеального, или совершенного, раствора была предложена Люьисом. Строго говоря, она приложима только к газовым растворам при разрежении. При других состояниях эта концепция используется для приближенных оценок поведения и часто применяется для этой цели при отсутствии достоверных данных и более точного метода. [c.141]

    Для нахождения энергий других состояний нужно решить уравнение (6-13). Однако все приведенные выше уравнения были выведены в предположении, что лиганды — точечные заряды или точечные диполи и в связях металл—лиганд нет ковалентного характера. Если бы предположение было верно, то, подставив в уравнение (6-13) значение Dq, определенное таким образом, мы найдем значение энергии уровня из атомного спектра газообразного иона [45] и вычислим на основании полученных данных с помощью уравнения (6-13) энергии остальных двух уровней комплекса. Частоты ожидаемых спектральных переходов можно вычислить для одной полосы из разности энергий уровней Tig(F)—M2g, а для другой из разности энергий Tig(P)— Aig, поскольку переходы (табл. 6-6) соответствуют этим разностям. Опытные значения энергий, найденные из спектров (табл. 6-6), почти всегда меньше величин, вычисленных таким путем. Отклонения могут быть обусловлены ковалентностью связей. Влияние ковалентности заключается в том, что электронная плотность иона металла частично делокали-зуется и распространяется на лиганды, уменьшая тем самым электрон-электронное отталкивание d-электронов в комплексе иона металла по сравнению с отталкиванием в газообразном состоянии. Это вызывает уменьшение разности энергий состояний и 3F в комплексе по сравнению с газообразным ионом. Следовательно, нельзя пользоваться значением р в уравнении (6-13), полученным из данных для газовой фазы, а необходимо оценивать р из экспериментальных данных для каждого комплекса. Для таких вычислений можно использовать уравнение (6-13), взяв значение Dq для перехода Aig- Tig и экспериментальное значение энергии Е для перехода M2g-> 7 ig(P). Тогда единственным неизвестным в уравнении (6-13) остается р. Понижение уровня является наряду с другими величинами мерой ковалентности, которая часто выражается в виде величи- [c.189]

    Метастабильные атомы представляют собой атомы, находящиеся в возбужденном состоянии, переход из которого в основное и другие состояния посредством излучения запрещен. Поэтому метастабильные состояния являются долгоживущими. Время жизни метастабильных атомов определяется их столкновениями с атомами и электронами. Столкновения с электронами играют существенную роль в сильноточных разрядах и в газовой плазме. В условиях протекания слабых токов в радиоионизационных детекторах основное значение имеют столкновения метастабильных атомов с атомами основного компонента (газа-носителя) и молекулами примеси (анализируемого газа). Эти процессы приводят к разрушению метастабильных атомов — их дезактивации. Если энергия возбуждения атома газа-носителя в метастабильное состояние превосходит энергию ионизации молекулы анализируемого газа, то столкновения метастабильных атомов газа-носителя с молекулами анализируемого газа приводят к ионизации последних. Этот процесс называется эффектом Пеннинга [21, 24]. [c.56]

    Из описанного выше термохимического материала ясно, что пока невозможно сделать какие-либо обобщения даже для однотипных комплексов. Это обусловлено рядом причин. Имеющийся материал не систематичен. Изученные комплексы сильно различаются по структуре Л40лекул, ассоциации или диссоциации в конденсированном и газовом состоянии. По степени ассоциации или диссоциации различаются и исходные соединения металлов. Часто нет данных для пересчета термохимических характеристик, полученных для комплексов в одном агрегатном состоянии, к другому состоянию. Наряду с изучением этих причин необходимо дальнейщее накопление термодинамических данных, а также изучение структуры молекул комплексов донорно-акцепторной природы. [c.66]

    Большой интерес представляет способ термического хлорирования в присутствии взвешенных веществ, как он был разработай в промышленности Герольдом, Гриммом и Зексауером [8]. Уже упомянутые трудности, связанные с образованием сал и и отложением угля и смолистых продуктов в трубопроводах и в других частях аппаратуры, в этом способе исключаются. Способ заключается в том, что, например, угольные шарики из специального бункера увлекаются потоком поступающего в печь газа и в течение всего процесса находятся в состоянии кипящего движения. Сажа и углистые частички, выделяющиеся в процессе хлорирования, непрерывно измельчаются трущимися друг о друга угольными ядрами и с газовым потоком выносятся из установки. [c.115]

    В зависимости от внешних условий вещества могут находиться в разных агрегатных состояниях — в газовом, идком, твердом. Прирс да сил притяжения частиц, образующих вещество, во всех состояниях электрическая, т. е. прямо или косвенно связана с участием эл1 .ктронов. Переход из одного агрегатного состояния в другое не сопровождается изменением стехиометрического состава вещества, но обязательно связан с большим или меньшим изменением его структуры. В этом смысле переход из одного состояния в другое относится к явлениям химическим. Конечно, здесь, как и всегда, нужно помнить об относительности и условности разграничения, в том числе и разграничения понятий физическое и химическое явление. [c.99]

    Гетерогенные системы, в которых в одном веществе (среде) распределено (диспергировано) в виде очень мелких частиц другое вещество, называются дисперсными. Дисперсионная среда бывает газовой, жидкой, твердой. В различных агрегатных состояниях может находтъся и диспергированное вещество. [c.125]

    Водород широко распространен в природе. Содержание его в земной коре (атмосфера, литосфера и гидросфера) составляет 3,0 мол. доли, %. Он входит в состав воды, глин, каменного и бурого угля,, нефти и т. д., а также во все животные и растительные организмы. В свободном состоянии водород встречается крайне редко (в вулканических и других природных газах). Водород — самый распространенный элемент космоса он составляет до половины массы Солниа и большинства звезд. Гигантские планеты солнечной системы Юпитер и Сатурн в основном состоят из водорода. Он присутствует в атмосфере ряда планет, в кометах, газовых туманностях н межзвездном газе. [c.273]

    Здесь всюду использованы единицы молекула/см , за стандартное состояние принимается 1 молекула/см и V/ N = 1, концентрации в тех же единицах. Значит, следует положить Гравн = N1/где N и Ni выражены ъ молекула/см . Переход к другим единицам можно осуществить, используя газовые законы. Так, если мы пользуемся концентрациями С молъ/л, то С /Сц= N1/Ni (iQ l Nx), где ТУд — число Авогадро. Подобным же образом можно брать давления, так как Р = RTtiPi/Pi2= l i RT). [c.188]

    Межступенчатые газовые холодильники во время продолжительных ремонтов компрессора подвергают чистке с обеих сторон проверяют, плотно ли соединены трубки с трубными досками, сохранилась ли целостность газовых турбок заменяют уплотнения. Масловлагоотделители, сепараторы, газосборники и другие емкости при ремонтах подвергают чистке, внутреннему и внешнему осмотру, проверке толщины стенок и состояния фланцевых соединений, а также гидравлическим испытаниям. [c.336]


Смотреть страницы где упоминается термин Газовое и другие состояния: [c.219]    [c.107]    [c.34]    [c.126]    [c.189]    [c.268]    [c.93]    [c.115]    [c.336]   
Смотреть главы в:

Общая и неорганическая химия -> Газовое и другие состояния

Неорганическая химия 1975 -> Газовое и другие состояния

Общая и неорганическая химия -> Газовое и другие состояния




ПОИСК





Смотрите так же термины и статьи:

Другие практические выводы, связанные с особенностями газового состояния



© 2024 chem21.info Реклама на сайте