Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение аминокислот с помощью ионообменной хроматографии

    Для разделения и количественного определения аминокислот особенно эффективными оказались методы распределительной, адсорбционной и ионообменной хроматографии. Большое применение, в частности, получил метод Мура и Стейна, в котором исследуемый раствор пропускают через колонку, наполненную или крахмалом (твердый полярный адсорбент), или ионообменной смолой (сочетание адсорбции с ионным обменом), и затем связанные на колонке вещества вымывают с различной скоростью подходящими растворителями. Сбор и анализ отдельных фракций осуществляются при помощи автоматических приспособлений. Метод Мура и Стейна позволяет получить через 24 часа данные о полном аминокислотном составе образца белка, используя при этом только 2,5—3,5 мг белка. Для оценки эффективности и значения этого метода полезно напомнить, что старые и более грубые аналитические приемы требовали для получения данных о полном аминокислотном составе белка нескольких недель трудоемкой работы, связанной с расходованием десятков граммов белка. [c.35]


    ОПРЕДЕЛЕНИЕ АМИНОКИСЛОТ С ПОМОЩЬЮ ИОНООБМЕННОЙ ХРОМАТОГРАФИИ а) Механизмы разделения [c.136]

    Ионообменная хроматография аминокислот на колонках. Определить аминокислотный состав белка — значит установить массовое или молярное соотношение составляющих его аминокислот, для чего необходимо точно определить количество последних. Само по себе количественное определение аминокислот особых затруднений не представляет, так как для этой цели имеется несколько приемлемых способов. Основное препятствие состоит в разделении их смесей, чего, однако, избежать нельзя, поскольку пока нет методов, позволяющих определять аминокислотный состав белков без гидролиза. Поэтому полипептидные цепи белков сначала расщепляют с помощью кислот или щелочей и определяют аминокислоты в полученных смесях. ИОХ по существу представляет собой метод разделения весьма сходных по химическим и мало различающихся по физико-химическим свойствам аминокислот. В настоящее время ИОХ достигла высокой точности, составляющей 2—4% (относительных). Механизация аналитического процесса привела к созданию так называемых аминокислотных анализаторов, которые, постепенно совершенствуясь, стали полностью автоматизированными быстродействующими агрегатами, работающими по заданной программе. Разделение аминокислот, как правило, ведется на катионитах, из которых чаще всего используется сульфированный полистирол, сшитый дивинилбензолом, добавляемым при синтезе в количестве 8%. [c.189]

    Для мясных продуктов дополнительной необходимой аминокислотой является оксипролин, который характеризует количество соединительных тканных белков в мясе. Его можно определять ионообменной хроматографией с помощью автоматических анализаторов или химическим колориметрическим методом [13, 15, 23]. Метод основан на нейтрализаиди кислотного гидролизата до pH 6,0, последующем окислении оксипролина с помощью 1,4% раствора хлорамина Т (или хлорамина Б) в смеси пропилового спирта и буфера и колориметрическом определении при 553 нм продуктов окисления оксипролина после реакщш с 10%-цым раствором шрд-диметиламинобензальдегида в смеси хлорной кислоты и пропилового спирта (1 2). [c.283]

    Методы количественного определения гексозаминов . Ввиду исключительно важной роли, которую играют 2-амино-2-дезоксигексозы в построении биополимеров и в биохимических процессах, необходимы надежные методы количественного определения этих моносахаридов. Однако ни один из известных методов количественного определения гексозаминов не является специфическим получаемые результаты зависят от наличия в смеси обычных моносахаридов и аминокислот, которые наряду с аминосахарами всегда образуются при гидролизе мукополисахаридов и гликопептидов. Поэтому все современные методы анализа аминосахаров включают стадию отделения их от аминокислот, других моносахаридов и неорганических солей с помощью ионообменной хроматографии [c.280]


    На основе нингидриновой реакции были разработаны методы количественного определения аминокислот, в частности метод распределительной хроматографии на бумаге, впервые внедренный в 1944 г. (А. Мартин и Р. Синдж). Эта же реакция используется благодаря своей высокой чувствительности в автоматическом анализаторе аминокислот. Впервые такой прибор сконструировали Д. Шпакман, С. Мур и У. Стейн (рис. 1.7). После разделения смеси аминокислот в колонках, заполненных специальными ионообменными смолами (сульфополистирольный катионит), ток элюента из колонки поступает в смеситель, туда же поступает раствор нингидрина интенсивность образующейся окраски автоматически измеряется на фотоэлектроколориметре и регистрируется самописцем. Этот метод нашел широкое применение в клинической практике при исследовании крови, мочи, спинномозговой жидкости. С его помощью за 2—3 ч можно получить полную картину качественного состава аминокислот в биологи- [c.42]

    Хроматографический метод — количественное определение субстрата или продуктов ферментативной реакции с помощью различных видов хроматографии. Так, в настоящее время для количественного определения аминокислот широко применяется автоматический прибор Штейна и Мура, в котором используется ионообменная хроматография. [c.198]

    Определение аминокислотного состава пептида проводится после полного гидролиза вещества, в ходе которого все пептидные связи разрушаются, и пептид превращается в смесь аминокислот, составлявших его. Гидролиз проводят действием 6 н. НС1 при llO в течение 20 ч. для предупреждения окислительного разрушения некоторых аминокислот в процессе гидролиза его осуществляют в атомосфере азота или в ваку-умированной запаянной ампуле. Полученный гидролизат подвергают количественному анализу с помощью ионообменной хроматографии и таким образом устанавливают, какие аминокислоты и в каких соотношениях входят в исследуемьш пептид. [c.55]

    В книге достаточно детально рассмотрены основные преимущества и недостатки классического метода определения аминокислотного состава белков с помощью ионообменной хроматографии по Муру и Стейну даны указания относительно выбора ионообменников, подготовки реактивов и численной интерпретации результатов. Значительное место также уделено изложению принципов анализа аминокислот методом газожидкостной хроматографии. Применение этого метода, обладающего на 2—3 порядка большей чувствительностью по сравнению с нингидринной реакцией по Муру и Стейну, позволяет значительно снизить количества белка, требуемые для определения его состава. Анализ аминокислот с помощью газожидкостной хроматографии пока еще не находит широкого применения, однако имеющиеся в ли-Фературе данные позволяют считать этот метод весьма перспективным. Кроме того, обсуждаются возможности использования газожидкостной хроматографии в сочетании с масс-спектромет-рией для определения состава и аминокислотной последовательности в пептидах. [c.4]

    Е а S t о е J. Е., Замечания к определению аминокислот при помощи ионообменной хроматографии, В o hem. J., 61, 601 (1955). [c.301]

    Данные по аминокислотному составу, включенные в настоящие таблицы, получены в основном с помощью ионообменной хроматографии на колонках (ИОХ) [1, 9, 54, 55] и микробиологического метода [11, 25, 30, 70], основанного на ограничении роста специально подобранных микроорганизмов на питательной среде, не содержащей той или иной аминокислоты, которая в этом случае становится лимитирующим фактором [И, 25. 30]. При определении какой-либо аминокислоты к питательной среде, не содержащей ее, добавляют исследуемый гидролизат. Об интенсивности роста микроорганизма судят по нарастанию кислотности среды (или по степени помутнения последней), которое измеряют соответствующим способом (титрование, нефелометрия). Основываясь на зависимости ростопой реакции от содержания в среде лимитирующей аминокислоты, строят графики для количественного определения аминокислот. [c.188]

    Метод анализа аминокислот с помощью ионообменной хроматографии базируется на работах Штейна и Мура [3—5], которые систематически изучали проблемы, связанные с разделением и количественным определением наиболее распространенных аминокислот. В 1958 г. эти авторы [5] предложили автоматическую систему, позволяющую проводить полный анализ аминокислот за 24 ч. В дальнейшем эта система неоднократно модифицировалась с целью увеличения скорости и чувствительности анализа. В настоящее время предел обнаружения аминокислот составляет несколько пикомолей, а длительность анализа равна 90 мин. Следует, однако, отметить, что ни одна из современных систем не дает такого высокого разрешения, как система, предложенная Муром и др. [5] . Уменьшение разрешающей способности, которое является следствием увеличения скорости разделения, затрудняет или даже делает невозможным определение малораспространенных аминокислот. [c.37]


    Попытки создать быстрые методы анализа аминокислот ранее предпринимались. Одним из наиболее распространенных является хроматографический анализ с использованием ионообменной, бумажной и газо-жидкостной хроматографии [1]. Так, например, определяли аминокислоты с помощью ионообменных смол [2], проводили полярографическое определение метионина [3]. Авторы [4] разработали метод колориметрического определения аминокислот. Ряд авторов определял аминокислоты методом обратного титрования. Исследуемые образцы обрабатывали уксуснокислым раствором хлорной кислрты, и избыток оттитровывали уксуснокислым раствором ацетата гуанидина или ацетата натрия [5,6] Аминогруппы аминокислот оттитровывали в среде этанола, а также в среде гликолей [7, 8]. [c.229]

    Резкая интенсификация научной деятельности за последние десятилетия вынуждает исследователя отказаться от чтения множества узкоспециальных публикаций и большую часть информации получать из заслуживающих доверия обзоров. Эта ситуация наблюдается и в области анализа аминокислот, пептидов и белков, где каждые пять лет появляются новые эффективные методы, способные заменить уже существующие. Например, в настоящее время газожидкостная хроматография успешно конкурирует с автоматической ионообменной хроматографией аминокислот по Муру и Стейну, которая полностью заменила микробиологический анализ, хроматографию на бумаге и другие методы количественного анализа, существовавшие до 1958 г. Определение последовательности пептидов — трудоемкая задача при использовании обычных методов — производится на данном этапе автоматически на секвенсере Эдмана, а последовательность небольших пептидов удобно определять с помощью масс-спектрометрии. [c.6]

    Выдающиеся успехи, достигнутые в различных областях биохимии и особенно в области белковой химии, во многом обязаньЕ высокому методическому уровню проводимых исследований. За сравнительно короткий срок были разработаны и нашли широкое применение такие эффективные методы, как хроматография на бумаге, ионообменная хроматография на смолах и замещенных целлюлозах, различные методы электрофореза, определение Ы- и-С-концевых аминокислот в белках и т. п. При помощи этих методов многие белки и ферменты выделены в чистом виде, а в некоторых, из них определена последовательность аминокислот и полностью установлена первичная структура. В последние годы получены интересные данные о структуре пептидных цепей в активных центрах некоторых ферментов. Значение вышеуказанных методов для развития биохимии белков трудно переоценить. [c.5]

    Оба метода определения числа К-копцов и исследования концевых аминокислот оказываются вполне удовлетворительными. Что касается измерения,,числа С-концов, то тут дело обстоит хуже. Один из практичных методов исследования С-конца — отщепление концевого звена с помощью чистого кристаллического фермента — панкреатической карбоксипептидазы. Этот фермент способен отщеплять постепенно по одному звену с С-конца поли-пептидной цепи. При этом некоторые аминокислоты им не атакуются (лизин, аргинин, пролин, оксипролин) поэтому этот метод не универсален, по все же чаще всего он применим. Отделив от конца цепи одно звено (путем кратковременного действия фермента), можно его выделить и идентифицировать с помощью бумажной или ионообменной хроматографии. [c.23]

    Определение химической структуры белка следует начинать с количественного анализа аминокислотного состава его полипептидных цепей. Для этого чистый и, если это возможно, кристаллический белок подпер-гают обычно кислотному гидролизу, чтобы гидролизовать все имеющиеся в белке пептидные связи, которые соединяют аминокислоты, входящие в состав этого белка. Затем определяют относительные количества высвобождающихся при таком гидролизе двадцати стандартных аминокислот. Определение количества аминокислот проводят с помощью метода хроматографии на ионообменных смолах, разработанного в начале 50-х годов У. Штейном и С. Муром (фиг. 39, 40). Результаты такого анализа аминокислотного состава двух ферментов Е. oli (Р-галактозидазы и триптофан-синтазы) приведены в табл. 2. (Триптофан-синтаза Е. соН, как скоро будет показано, состоит из двух различных полипептидных цепей, названных А-белком и В-белком. Данные, приведенные в табл. 2, касаются только А-белка.) [c.83]

    Благодаря работе Санжера были достигнуты большие успехи в установлении структуры ряда других гормонов, в частности адренокортикотропных гормонов (АКТГ) из передней доли гипофиза [100, 102]. Было установлено, что АКТГ имеют 39 аминокислотных остатков в нолипентидной цепи. Для установления последовательности аминокислот двумя группами исследователей были использованы различные протеолитические ферменты в сочетании с частичным кислотным гидролизом или без него. В первом случае после переваривания трипсином и химотрипсином были получены пептидные фрагменты, разделение которых достигалось с помощью электрофореза, противоточного распределения, ионообменной и бумажной хроматографии. Затем проводили определение последовательности аминокислот с помощью фенилизотиоциа-ната и метода динитрофенилирования для К-концевых аминокислот соответствующих пептидов, а также гидролиз карбоксипептидазой аминокислот с С-конца гормона. Таким образом была определена последовательность аминокислот для бычьего кортикотро-пина VI [103]  [c.412]

    Цитохром с из сердечной мышцы лошади был первым цитохромом, для которого установили полную аминокислотную последовательность. Гидролиз цитохрома с химотрипсином дал тринадцать больших пептидов, которые были разделены хроматографией на ионообменных смолах и очищены далее при помощи электрофореза и хроматографии на бумаге. Аминокислотная последовательность пептидов была установлена при помощи химических и ферментативных методов. Химические методы включали динитрофенилирование по Сэнджеру и деградацию по Эд-ману для идентификации N-концевых аминокислот, ферментативные — гидролиз лейцинаминопептидазой для определения N-концевых и карбоксипептидазой А для определения С-концевых аминокислот оба фермента использовались также для определения коротких аминокислотных последовательностей. [c.160]


Смотреть страницы где упоминается термин Определение аминокислот с помощью ионообменной хроматографии: [c.265]    [c.243]    [c.343]    [c.175]    [c.179]    [c.22]    [c.78]    [c.78]   
Смотреть главы в:

Гликопротеины Том 1 -> Определение аминокислот с помощью ионообменной хроматографии




ПОИСК





Смотрите так же термины и статьи:

Ионообменная хроматографи

Хроматография аминокислот

Хроматография ионообменная

Хроматография определение

Хроматография определение ионообменная



© 2025 chem21.info Реклама на сайте