Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Свинца галлия

    Электроотрицательность элементов (в порядке ее убывания) устанавливается следующим условным рядом фтор — кислород — хлор— бром — азот — сера — селен — йод — астатин — водород — углерод — фосфор — мышьяк — теллур — полонии — бор — кремний — германий — сурьма — висмут — бериллий — алюминий — галлий — олово — свинец. [c.26]

    Пламя используют в качестве источника света в так называемом методе фотометрии пламени, а также как один из основных способов атомизации веществ в методе атомно-абсорбционного анализа (см. разд. 3.2). В зависимости от состава горючей смеси температура пламени может поддерживаться в интервале 2000—3000 К, что обеспечивает достаточно низкий предел обнаружения элементов, энергии возбуждения резонансных линий которых не превышают 5 эВ и соединения которых атомизируются в пламени в достаточной мере. Особое значение метод фотометрии пламени имеет для определения микроколичеств соединений щелочных и щелочноземельных металлов, для которых предел обнаружения этим методом находится в диапазоне 0,001 — 1 нг/мл. Предел обнаружения порядка 0,1—1 нг/мл достигается также для таких элементов, как европий, иттербий, свинец, медь, серебро, индий, таллий, хром, марганец, алюминий и галлий, причем в некоторых случаях в качестве аналитического сигнала используют молекулярную эмиссию пламени. Освоение высокотемпературных пламен (водородно-кислородного, ацетилен-кислородного) позволило значительно увеличить число определяемых элементов. [c.58]


    Галлий—свинец, галлий—кадмий Алюминий—медь, железо—медь Цинк, алюминий Галлий, свинец, галлий, кадмий Железо, медь Железо, марганец, хром Цинк, железо, алюминий, хром, марганец, Бериллий, медь, никель, бериллий, алюминий Бериллий, медь, никель Медь, алюминий, магний Медь—цинк, медь—кадмий, цинк-кадмий Хром, марганец, никель Железо, хром [c.419]

    Цирконий), (ванадий), церий, олово, кобальт, иттрий, неодим, лантан, свинец, галлий, ниобий, гадолиний, торий, цезий, германий, празеодим, самарий, скандий, (бор), (молибден), (уран), (серебро), (сурьма), (иод) 5.(10-3—10-1) 1-10-1 [c.48]

    Галлий — свинец галлий — кадмий  [c.418]

    В свинцовоплавильном производстве галлий почти полностью остается в шлаках шахтной плавки. Часть галлия, попадающая в черновой свинец, при его рафинировании переходит в шликеры, с которыми возвращается на шахтную плавку [89]. [c.251]

    Г аллий—свинец, галлий—кадмий СБС  [c.419]

    Химические знания — необходимая составная часть базовых, фундаментальных знаний, позволяющих инженеру, технологу, иссле> дователю достигать новых результатов в различных областях техники. Как одна из сторон материальной культуры, всей человеческой цивилизации техника всегда была производной от уровня развития химии. Неудивительно, что от химической компоненты получили свое название целые эры в развитии цивилизации каменный, бронзовый, железный век. Двадцатый век называют веком атомной энергии, химии синтетических материалов и проникновения в тайны живого. Технику XX в. невозможно себе представить без таких металлов, как алюминий, титан, используемых при строительстве самолетов и кораблей, цирконий, уран, свинец, бериллий, используемых в атомной технике, германий, кремний, мышьяк, галлий, олово, сурьма, используемых в полупроводниковой технике, без серебра в фотографии, без меди, алюминия в электротехнике, без таких металлов как хром, вольфрам, тантал, молибден и многих других, способствующих созданию высокопрочных, термостойких, коррозионноустойчивых материалов. Без этих материалов нельзя представить себе будущее нашей цивилизации .  [c.183]

    СБС Галлий — свинец галлий — кадмий [338  [c.205]

    Практически восстановлением окислов водородом можно получить следующие металлы железо, кобальт, никель, молибден, вольфрам, сурьму, висмут, германий, олово, свинец, галлий, индий, таллий, кадмий, медь. Из неметаллов этим методом иногда получают теллур. [c.22]

    Небольшие количества цинка в силикатных и окисных минералах или подобных им материалах могут быть отогнаны в токе водорода при 1000—1100° . Свинец, галлий, кадмий, серебро и другие металлы в большей или меньшей степени будут сопутствовать цинку. [c.850]


    Цинк, алюминий Г аллий — свинец галлий — кадмий СБС  [c.418]

    Кривые дифференциальной емкости в расплавах для большинства исследованных металлов (свинец, кадмий, олово, алюминий, сурьма, серебро, таллий, висмут, индий, галлий и теллур) имеют форму, близкую к параболической, с ярко выраженным минимумом и практически симметричными ветвями (рис. 78). Потенциалы минимума во всех случаях близки к потенциалам максимума электрокапиллярной кривой в расплаве, т. е. к п. н. з. соответствующего металла. Емкость в минимуме достаточно высока 0,20- 0,75 Ф/м в зависимости от природы металла и расплава. [c.137]

    Получение галия высокой чистоты. Получаемый вышеописанными методами галлий содержит переменное количество примесей, в том числе цинк, алюминий, кремний, железо, медь, магний, свинец, олово и др. Особенно много примесей (до 5% и более) содержится в галлии, полученном амальгамным способом [108]. Так как для многих областей применения, в особенности для полупроводниковой техники, требуется галлий высокой чистоты, полученный металл всегда рафинируют. [c.264]

    Прецизионные данные по дифференциальной емкости, полученные вначале на ртутном электроде, а затем на ряде других металлов (галлий, свинец, висмут, кадмий, сурьма, индий, цинк, олово, серебро и др.), послужили экспериментальной основой современной теории двойного электрического слоя. Для объяснения качественных закономерностей можно воспользоваться формулой плоского конденсатора (12.6), которая справедлива прежде всего для интегральной емкости. На рис. 31, а представлены кривые интегральной емкости для раствора поверхностно-неактивного электролита NaF. Ионы F" подходят к поверхности ближе, чем ионы Na+, поэтому в области адсорбции анионов емкость выше, чем при дС.О. В разбавленном растворе NaF вблизи п. н. з. среднее расстояние ионов до поверхности значительно возрастает, поскольку в этих условиях ионная обкладка двойного слоя наиболее сильно размывается тепловым движением. Поэтому здесь на К, -кривой наблюдается минимум. Слагаемое в уравнении (12.23), пропорциональное dK/dE, делает зависимость С от Е более сложной (рис. 31, б). [c.56]

    Известно, что не все металлы вытесняют водород из кислот-неокислителей. Из следующего набора металлов свинец, стронций, висмут, хром, ртуть, никель, сурьма, марганец, кадмий, палладий, олово, галлий, кобальт [c.18]

    Алюминий, галлий, бериллий, германий, олово, свинец и сурьма как р-элементы проявляют уже амфотерные (т.е. металлические и неметаллические) свойства. Подобное поведение характерно и для большинства /-элементов (элементов Б-групп Периодической системы). [c.157]

    Специалистами США (1973 г.) разработан туннельный диод на основе арсенида галлия с использованием свинца в качестве электрода (см. гл. IX). При охлаждении диода ниже Тс = 7,23 К свинец приобретает свойство сверхпроводимости, что приводит к образованию сверхпроводящего полупроводникового перехода. [c.528]

    Аналогично действуют следующие металлы бериллий, свинец, олово, галлий. [c.622]

    Ампулы из кварцевого стекла вакуумная установка печь с терморегулятором (до 1000°С) ХА-термопары и потенциометр ПП-63 фильтр Шотта. Индий-0, галлий-0, красный фосфор В-4, свинец С-00, висмут Ви-00, азотная кислота. [c.72]

    Синтез фосфидов индия и галлия из стехиометрических расплавов затруднен необходимостью применения высоких температур и давлений. Подобрав подходящий растворитель, синтез можно осуществить при более низких температурах, а значит, и при более низких давлениях, отвечающих этим температурам. Жидкий свинец способен растворять значительные количества индия и фосфора. При этом [c.73]

    Халькогенидными называются стекла, образованные из сульфидов, селенидов и теллуридов. Стеклообразователями в таких системах следует считать серу, селен и теллур. В сочетании с ними в состав стекол могут входить фосфор, кремний, германий, сурьма, висмут, олово, серебро, свинец, галлий, индий, таллий, цинк, кадмий, ртуть, медь, золото [62]. Такие элементы как бор и алюминий в халькогенидных системах дают стекла, легко разлагающиеся в воздухе и поэтому для синтеза устойчивых систем не при.меняются. Подробный обзор исследований и классификацию дал Б. Т. Коло-миец [8,76]. Дополнительные сведения имеются у Н. Раусона 2]. [c.56]

    Вместе с галлием выделяются на катоде и переходят в амальгаму натрий (в начале электролиза его количество примерно вдвое больше количества галлия) и такие содержащиеся в алюминатных растворах, примеси, как цинк, медь, свинец. Железо, находящееся в растворе в виде коллоидных частичек гидрата закиси, также в основном переходит в амальгаму. Содержащиеся в растворе ванадий и молибден восстанавливаются на катоде до нерастворимых в щелочи соединений низших валентностей, которые переходят в шлам, представляющий собой ванадиевый концентрат [103]. [c.261]

    Нужно сказать, что при большем исходном содержании примесей, когда они находятся в расплаве также и в виде взвеси твердых частиц, эти частицы служат центрами кристаллизации галлия. Поэтому содержание примесей железа, никеля, марганца, кальция и других в первых выпавших кристаллах в этом случае будет больше, чем в оставшемся расплаве. Соответственно при дробной кристаллизации такого металла первую фракцию кристаллов надо выводить из цикла. Кроме того, некоторые примеси, как цинк, свинец, медь, накапливаются в окисной пленке, которая всегда покрывает поверхность галлия. Для ее удаления кристаллизацию ведут под слоем соляной кислоты [112]. Этими обстоятельствами объясняются некоторые противоречия в литературных данных о поведении примесей при кристаллизации. [c.265]


    Взаимодействие с металлами. Индий, как и галлий, не образует ни с одним металлом непрерывных твердых растворов. Большой растворимостью в индии в твердом состоянии обладают все металлы, окружающие его в периодической системе галлий, таллий, олово, свинец, висмут, кадмий, ртуть, в меньшей мере — цинк. Кроме того, большой растворимостью в индии обладают магний и литий. Сам индий образует твердые растворы на основе металлов подгруппы меди, а также никеля, марганца, палладия, титана, магния, олова, свинца и таллия. Ограниченная растворимость в жидком состоянии обнаружена в системах индия с алюминием, железом и бериллием. [c.297]

    Редкие элементы — условное название большой группы (около 50) элементов лития, бериллия, галлия, индия, германия, ванадия, титана, молибдена, вольфрама, редкоземельных элементов, инертных газов и др. Большинство Р. э.— металлы, поэтому термин редкие элементы часто заменяют термином редкие металлы . Появление термина Р. э. объясняется сравнительно поздним освоением и использованием этих элементов, что связано с их малой распространенностью, трудностями выделения в чистом виде и др. Неправильно связывать понятие Р. э. только с малой распространенностью их, так как ряд этих элементов (титан, ванадий, литий и др.) содержатся в земной коре и в больших количествах, чем давно используемые в технике такие металлы, как свинец, олово, ртуть. [c.112]

    Установлена также возможность определения висмута(1П) наряду с ионами других элементов (медь, индий, цинк, свинец, галлий, германий, кадмий, скандий) при помощи ЭДТА в безводной уксусной кислоте и в смеси ее с хлороформом или другими органическими растворителями [29—32], а в некоторых случаях при необходимости определения малых количеств висмута рекомендуется экстрагировать его хлороформом в виде иодида. [c.129]

    Магнитные свойства простых веществ также обнаруживают периодическую зависимость от порядкового номера элемента (рис. 126), но закономерности, которым подчиняется эта зависимость, требуют пояснения. В стандартных условиях простые вещества находятся в разном агрегатном состоянии. Все газообразные и жидкие простые вещества являются диамагнитными. Единственным исключением является кислород, парамагнетизм двухатомной молекулы которого объясняется с позиций метода МО. Сложнее обстоит дело с кристаллическими веществами. Магиитные свойства крист аллов определяются главным образом тремя вкладами диамагнетизмом атомного остова, орбитальным диамагнетизмом валентных электронов и спиновым парамагнетизмом. У неметаллов, в кристаллах которых доминирует ковгшентная связь, вклад спинового парамагнетизма пренебрежимо мал, поэтому все они диамагнитны. Парамагнитными свойствами обладают все переходные металлы с недостроенными и /оболочками, щелочные, щелочно-земельные металлы и магний, а также алюминий. -Металлы с заполненными внутренними оболочками (подгруппы меди и цинка) диамагнитны, так как у них спиновый парамагнетизм не перекрывает двух диамагнитных составляющих (орбитального диамагнетизма валентных электронов и диамагнетизма атомного остова). По той же причине диамагнитными свойствами обладают металлы подгруппы галлия, олово и свинец. [c.248]

    Рубидий Висмут, европий Свинец, галлий. Стронций. . . Щтрий, олово. Рутений. ... Магний, кальций барий. ... Родий [c.18]

    Электрохимические процессы очень часто приводят к образованию новых фаз. Так, при электролизе растворов щелочей у границы электрод — электролит образуется новая газообразная фаза (водород и кислород), возникшая в результате разложения жидкой фазы — воды, а электролиз растворов хлоридов приводит к выделению газообразных водорода и хлора. При электролизе растворов солей металлов на катоде идут процессы образования новых жидких (ртуть, галлий) или твердь[х (медь, цинк, свинец, никель и т. д.) металлических фаз. Во время заряда кислотного аккуму- [ятора твердый сульфат свинца па (одном из электродов превращается в металлический свинец, а па другом — в диоксид свинца. Число этих примеров можно было бы начительно увеличить, но и этого достаточно, чтобы понять, насколько часто следует считаться с воз-никиовением новых фаз в ходе электрохимических процессов. [c.332]

    Одним из важнейших достижений в области каталитического риформинга за последние 20 лет считается переход к использованию би- и полим ° таллических катализаторов. Используемые для промоти-рования металлы можно разделить на две группы. К первой из них принадлежат металлы VHI ряда иридий и рений, известные как катализаторы гидро-дегидрогенизации и гидрогенолиза. Другая, более обширная группа модификаторов включает металлы, которые практически неактив в указанных реакциях. Такими металлами являются металлы IV группы германий, олово, свинец П1 группы галлий, индий и редкоземельные элементы И группы - кадмий. [c.153]

    Щелочи взаимодействуют с некоторыми металлами / -семейства (алюминий, галлий, индий, свинец н др.) и -семейства (2п, Си, Ре и др.). На металлы 5-семейства [целочи не действуют (исключение — бериллий). [c.112]

    Характеристика. При переход от а-металлов к р-метал-лам отмечается увеличение числа апектронов (до 3—4) на внешнем уровне атомов за счет заполнения ими р-подуровня. Это приводит к снижению восстановительной способности элементов и частичной утрате некоторыми из них типично металлических черт мягкости, легкоплавкости. Такие металлы, как алюминий А1, галлий Оа, индий 1п и таллий Т1, атомы которых содержат на внешнем уровне по два в- и по одному р-электро-ну, входят в состав П1А-группы периодической системы элементов Д. И. Менделеева, и их называют р -э лементами. Олово 8п и свинец РЬ, в атомах которых имеется по два внешних р-электрона, входят в состав П А-группы, и их называют р2-э лементами. [c.407]

    Фильтрование. Эффективна очистка галлия от ряда примесей фильтрованием через пористую перегородку. Способ основан на очень малой растворимости большинства металлов в галлии при температуре, близкой к температуре его плавления. При этой температуре примеси в основном находятся в виде взвеси мелких частичек — как самого элемента, так и его окислов или соединений с галлием ( uGaa, FeGaa, NiGa4 и т. п.). По данным [ПО], растворимость при 50° у меди 2,8-10 %, у никеля 6,0-10 , у титана 2,2-10 , у хрома 1,2-10 и у железа 1,0-10" %. Фильтруют через стеклянную или винипластовую перегородку. Оптимальный диаметр пор 30—50 мк [3]. Этим способом содержание примесей железа, меди, кремния и многих других можно снизить до тысячных и даже десятитысячных долей процента. Цинк и свинец при фильтровании не удаляются [108]. [c.264]

    На гидрометаллургических цинковых заводах индий, подобно галлию, остается в отвальных кеках. Причина этого — низкий pH осаждения индия из сульфатных растворов (см. рис. 39). Если некоторая часть индия остается в растворе, то он попадает в медно-кадмиевый кек и концентрируется в остатке от разложения вторичной кадмиевой губки [89]. В связи с небольшим количеством этих продуктов они не имеют значения для его извлечения. Отвальные цинковые ке-ки, а также раймовки обычно перерабатывают далее способом вельцевания, при котором цинк и свинец переходят в возгоны — так называемые вельц-окислы. Вместе с ними в возгоны переходит и индий (примерно 80%) [90]. [c.302]

    Исследовано 22 жидких металла. У 16 металлов вблизи точки плавления г находится в интервале от 8 до 9 (металлы подгруппы лития, алюминий, галлий, индий, таллий, железо, кадмий, ртуть, висмут, сурьма, германий, олово). Надо полагать, что в этих простых жидкостях относительно широко распространены фрагменты ОЦК структуры, В пяти случаях (медь, серебро, золото, свинец, цинк) 2 = 11, В этих жидких металлах, видимо, преобладают фрагменты плотноупакованных структур. Если твердая фаза имеет ОЦК структуру, то после плавления координационное число, как правило, сохраняется близким к 8 и нередко остается почти без изменений в больиюм интервале температур, достигающем несколько сот градусов (щелочные металлы, алюминий). Когда твердая фаза в точке плавления не имеет ОЦК структуры, во многих случаях после плавления г 8, Следовательно, строение жидкостей и в этих случаях можно охарактеризовать как ОЦК решетку, содержащую столь большое число дефектов, что дальняя упорядоченность атомов отсутствует. Таковы жидкие инертные газы, олово, алюминий, никель, висмут, германий, сурьма, галлий, индий, кадмий, ртуть. [c.269]

    Взаимодействие графита с большинством металлов и некоторыми металлоидами при соответствующих температурах приводит к образованию карбидов. Не образуют карбидов цинк, кадмий, ртуть, галлий, индий, таллий, олово, свинец и висмут. Медь, серебро и золото образукзт нестойкие карбиды, разлагающиеся со взрывом. Большинство конструкционных материалов на основе металлов взаимодействует с графитом, образуя карбиДы стехнометрического состава, или науглероживаются с образованием нестабильных карбидов, распадающихся при температурах ниже температуры образования карбида. Образование карбидов, как правило, сопровождается увеличением прочности и твердости материалов. Многие металлы начинают взаимодействовать с углеродом значительно ниже температуры их плавления. [c.127]

    Образование металлорганическнх соединении часто является преимущественным путем электровосстаиовления галогенорга-нических соединений, особенно метилгалогенидов, на катодах из таких металлов, как ртуть [39, 127, 135, 136], свинец [137—139], олово [140—142], висмут 143], галлий [144], индий и таллий [145]. В апротониой среде металлорганические соединения, по-видимому, образуются и па катодах из цинка нли кадмия [14(3—150] Очень часто получается смесь продуктов, содержащая R M, Rn iMX и т. д., а также Rn-jM—MR , [123, 142, 151, [c.280]

    С углеродом в восстановительной среде молибден реагирует, образуя карбиды. Диффузия углерода в молибден начинается ниже 1000°, что делает металл хрупким. Окись углерода и углеводороды при высокой температуре также карбидизируют молибден. Двуокись углерода при повышенной температуре окисляет его. Растворимость водорода в молибдене растет с повышением температуры до 0,5 см в 100 г.. Расплавленные натрий, калий, литий, галлий, свинец, висмут в отсутствие окислителей не действуют на молибден даже при значительной температуре. Расплавленные олово, алюминий, цинк, железо и некоторые другие металлы активно реагируют с ним. [c.162]


Смотреть страницы где упоминается термин Свинца галлия: [c.74]    [c.38]    [c.252]    [c.267]    [c.280]   
Аналитическая химия мышьяка (1976) -- [ c.195 , c.199 ]




ПОИСК





Смотрите так же термины и статьи:

Галлай

Галлий

Галлы



© 2024 chem21.info Реклама на сайте