Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение магния меди и сплавах меди

    Сухенко К. А., Спектрально-аналитическое определение магния, меди, титана и железа в алюминиевых сплавах, Заводск. лаборатория 5, № 11, 1347 [c.275]

    И. М. Кольтгоф, Д. Д. Лингейн. Полярография. Госхимиздат, 1948, (508 стр.). Книга содержит достаточную полную сводку теоретических и практических исследований в области полярографии. Приведена характеристика полярографического определения более чем 60 неорганических ионов и соединений и описаны методики анализа технических материалов сплавов меди, никеля, цинка, магния, свинца, сталей, руд и т. д. Отдельные главы содержат сведения по полярографическому определению органических соединений. В заключение описывается методика полярографирования с твердыми электродами, н способ амперометрического титрования. [c.488]


    Методика определения. Навеску алюминиевого сплава 0,1 г обрабатывают без подогревания 5 мл хлористоводородной кислоты (1 1) в стакане емкостью 100—150 мл. При этом алюминий, магний и другие элементы переходят в раствор, весь же висмут, а также большая часть свинца и меди остаются в остатке. По окончании растворения немедленно прибавляют 5 мл дистиллированной воды и нерастворившийся остаток отфильтровывают на маленьком бумажном фильтре, промывая его 2 раза небольшими порциями горячей воды. Отфильтровывание и промывание остатка следует проводить возможно быстро, иначе для висмута получаются заниженные результаты. Промытый осадок растворяют па фильтре в 5—10 мл горячей азотной кислоты (1 1), собирая жидкость в мерную колбу емкостью 50 мл. Фильтр промывают небольшими порциями азотной кислоты (1 10), а затем водой. Промывные воды собирают в ту же колбу. В колбу вводят 10 aia насыщенного водного раствора тиомочевины и раствор разбавляют водой до 50 мл. Измеряют оптическую плотность раствора на фотоэлектроколориметре с синим светофильтром. [c.377]

    Каждый максимум на кривой плавкости (соответственно точке S на рисунке) отвечает определенному интерметаллическому соединению. Число таких максимумов говорит о числе отдельных соединений. Например, на диаграмме плавкости сплавов меди и магния [c.312]

    При затруднениях в определении скорости коррозии рекомендуется пользоваться распределением металлов по группам, в пределах которых контакт может считаться допустимым. Для атмосферных условий эксплуатации можно выделить пять таких групп I — магний П — алюминий, цинк, кадмий П1 — железо, углеродистые стали, свинец, олово IV — никель, хром, коррозионностойкие стали (в пассивном состоянии) типа Х17 и 18—8 V — медно-никелевые и медноцинковые сплавы, медь, серебро, золото. [c.74]

    Коррозионной усталости в определенных условиях подвержены практически все конструкционные сплавы на основе железа, алюминия, магния, меди, никеля, титана и других металлов. Интенсивность влияния коррозионной среды на сопротивление усталости определяется ее агрессивностью, структурным состоянием металла, его дефектностью, состоянием поверхности изделий, их геометрией и условиями нагружения. Наиболее полно изучена коррозионная усталость углеродистых и легированных сталей и значительно меньше — сплавов титана, алюминия и других металлов. [c.49]


    Медь и сплавы меди. При определении малых количеств магния в меди спектр возбуждают в дуге переменного тока, I — 9 в, постоянный электрод угольный. Аналитическая пара линий Мд [c.171]

    Цель работы определение магния, марганца, меди и железа в алюминиевом сплаве методом трех эталонов. Эта работа может быть также выполнена после переведения алюминиевого сплава в раствор (см. работу 16). [c.72]

    Реакция протекает в щелочной среде при pH = 12 ч-13,2. Раствор реагента при этом значении pH винно-красного цвета, который в присутствии ионов бериллия переходит в сине-фиолетовый до синего в зависимости от количества присутствующего бериллия. Оптическую плотность раствора измеряют в фотометре или фотоколориметре при Лэфф = 620 нл (ммк) (оранжевые светофильтры), Окраска устойчива в течение 18 ч. При содержании от 0,001 до 6—7% Ве его определяют непосредственно на фоне основы сплава алюминия в растворе, полученном после растворения сплава в щелочи или в кислоте с последующим переведением кислого раствора в щелочной. Присутствующие часто в сплавах магний, медь, железо, марганец, титан, цирконий при этом осаждаются щелочью в виде гидроокисей и дальнейшему определению бериллия не мешают, так же как алюминий и цинк. [c.151]

    Для определения примесей в алюминиевом сплаве анализируемому образцу придают форму электрода. Таким же образом подготавливают образцы трех эталонов, содержащих определенные количества примесей, обычно присутствующих в сплаве. Так, например, при анализе дюралюминия эталоны содержат магний, медь, железо, марганец. Кроме того, подготавливают образец железа, который служит стандартом, поскольку известны длины волн всех его спектральных линий. Кассету с фотопластинкой вставляют в спектрограф и открывают крышку кассеты. Образцы поочередно укрепляют в держателе электродов искрового генератора ИГ-3 и в стандартных условиях возбуждения (напряжение 220 В, сила тока [c.230]

    Изучив условия поведения магния на анионитах и зная поведение всех элементов, входящих в магниевый сплав, мы применили следующую методику определения цинка в магниевых сплавах, содержащих цинк, магний, алюминий, марганец, медь, железо и кремний, используя ионный обмен. [c.94]

    При выделении оловянной кислоты из сплавов осадок захватывает заметные количества ионов других металлов, находившихся в сплаве (медь, железо и др.) захватывается также фосфорная кислота. При выделении нерастворимой кремневой кислоты из раствора силикатов захватываются и не удаляются при последующем промывании примеси многих металлов,, дающих в этих условиях растворимые соли. При осаждении щавелевокислого кальция захватывается заметное, а иногда и большое количество магния. При осаждении никеля большим избытком диметилглиоксима последний частично захватывается осадком и не отмывается водой, что обусловливает получение повышенных результатов при определении никеля (после высушивания и взвешивания осадка) . Чтобы получить точные результаты,. [c.66]

    Осаждение гидроокиси магния избытком едкого натра в присутствии алюминия, олова, цинка и других амфотерных металлов более пригодно для повышения концентрации магния в растворе, чем для отделения его от этих металлов, поскольку они соосаждаются вместе с гидроокисью магния. Метод отделения магния от таких металлов, как железо, марганец, медь, цинк, свинец и никель, основан на осаждении гидроокиси магния едким натром в присутствии тартрата или цианида, которые предотвращают осаждение указанных металлов . Этот метод выделения магния был применен для определения его в сплавах алюминия. Для отделения магния от больших количеств титана применяют осаждение магния в виде гидроокиси из растворов, содержащих перекись водорода . [c.528]

    Литейные алюминиевые сплавы [57]. Для придания алюминиевым сплавом хороших литейных свойств в них вводят легирующие элементы в количествах, достаточных для образования эвтектики и в то же время дающих возможность упрочнять сплавы путем закалки и старения. Такими элементами являются обычно кремний, медь или магний. Нами были исследованы литейные сплавы, в которых основным легирующим компонентом является кремний (АЛ4, АЛ5, АЛ9 и АЛ 10В). Присутствие в этих сплавах большого количества кремния оказывает определенное влияние на их характер анодирования и на свойства получаемых окисных пленок. По сравнению с пленками, полученными на деформируемых сплавах, пористость пленок на сплавах АЛ4, АЛ5 и АЛ9 увеличивается, до 20—26%, а па вторичном сплаве АЛ 10В — до 70%. Повышение пористости можно объяснить двумя причинами во-первых, вследствие образования в пленке микротрещин вокруг включенных в окись кристаллов кремния и, во-вторых, из-за наличия в самом сплаве микропор (мелких пустот), которые остаются в пленке (особенно у сплава АЛ 10В). [c.140]

    Для устранения влияния структуры твердой пробы на результаты анализа иногда применяют ее плавление. Введение расплава существенно повышает точность, если удается поддерживать постоянной его температуру. Например, при анализе алюминия и алюминиевых сплавов плавление образцов позволяет повысить точность определения меди, цинка, магния и других элементов в 1,5—2,5 раза. Искру зажигают между поверхностью расплава и подставным электродом. [c.256]


    Составьте примерную методику для определения небольших содержаний меди и магния в алюминиевых сплавах с помощью фотоэлектрического стилометра ФЭС-1. Методика должна обеспечивать возможно большую точность анализа при достаточной чувствительности. [c.279]

    Общие сведения. Цинк, кадмий, ртуть являются последними представителями -переходных элементов в периодах. Это обстоятельство, а также специфика полностью завершенной ( °) орбитали накладывают на химию этих элементов определенные особенности. С одной стороны, они еще похожи на своих предшественников по периоду, с другой — в большей мере, чем другие -элементы, похожи на элементы главной группы (НА). Например, сульфат цинка очень похож на сульфат магния, а его карбонат — на карбонат бериллия. Общими для всех элементов главной и побочной подгрупп второй группы являются близость оптических спектров и сравнительно низкие температуры плавления металлов. С медью, серебром и золотом элементы подгруппы цинка роднит следующее. Как и элементы подгруппы меди, они дают комплексы с МНз, галогенид- и цианид-ионами (особенно 2п и С(1). Из-за сильного эффекта взаимной поляризации их оксиды окрашены, достаточно непрочны. Электрохимические свойства в ряду 2п—Сё—Нд изменяются аналогично их изменению в ряду Си—Ад—Аи. Они легко дают сплавы. [c.555]

    Принадлежность данного сплава к определенному типу дает возможность с большой степенью достоверности предвидеть примерный его состав. Так, например, алюминиевые сплавы содержат магний, железо, кремний, титан, медь, цинк, марганец, никель и др. медные сплавы — олово, цинк, СБ1 н ц, сурьму, висмут, железо, никель, кремний, фосфор и др. [c.453]

    Около 40% производимого цинка используют для цинкования железа, определенное количество — в гидрометаллургии для цементации, при производстве гальванических элементов. Сплавы цинка (главным образом латуни и жидкотекучие литейные сплавы с алюминием, медью и магнием) обладают ценными свойствами и широко применяются в различных отраслях промышленности. Они пригодны также в качестве полиграфических сплавов для литья шрифтов. [c.384]

    Разработаны методы определения кобальта в металлических никеле [88, 109, 584, 775, 957, 1002, 1082, 1188, 1200, 1417, 1518], натрии [1321, 1458], меди [686], магнии [343, 830], алюминии [1395], цирконии и титане [343, 927, 1071, 1081, 1445, 1499], свинце [186], висмуте [233], уране [1387], стеллите [73], победите [357], в сплавах кобальт — платина [1488], хром — кобальт [96], вольфрам— кобальт [520], в карбидах вольфрама и титана [1208] и других объектах [227]. [c.198]

    Радиоактивационный метод применяют для определения фосфора в горных породах и минералах [569, 760, 1109], в сталях и сплавах 542, 555, 738], в металлах — алюминии, железе, магнии, селене, теллуре, сурьме, никеле, кальции, литии, натрии, боре, меди и др. [310, 427, 466, 470, 471, 490, 503, 665, 698, 706, 707], в кремнии [134, 812, 836], в карбиде кремния [532, 1080], в окиси бериллия [252] и мышьяке [982]. [c.81]

    Сплавы цинко-алюминиевые. Спектральный метод анализа Магний первичный. Спектральный метод определения натрия и калия Магний первичный. Спектральный метод определения кремния, железа, никеля, алюминия, меди, марганца и титана [c.821]

    Определение алюминия в магниевых сплавах [458]. Не мешают компоненты магниевого сплава — магний и марганец. В присутствии цинка определяют сумму цинка с алюминием титрованием при pH 3 с использованием в качестве индикатора комплексоната меди с ПАН-2 и вводят поправку на цинк, используя пересчетный коэффициент с цинка на алюминий 0,41. [c.169]

    Определению магния с феназо мешают железо, алюминий, медь, цинк, никель, марганец, титан. Присутствие растворимых карбонатов и силикатов оказывает незначительное влияние, что позволяет определить магний в карбонатсодержащих природных водах, а также применять реактив при анализе многих сплавов, требующих для своего растворения едкий натр, которой может содержать примеси карбонатов или силикатов. [c.35]

    При определении магния в алюминиевых сплавах для маскирования мешающих элементов применяют смесь триэтаноламина, цианида, аскорбиновой кислоты и сегнетовой соли [553]. В качестве маскирующего вещества использована смесь триэтаноламина (для связывания Ре, А1 и Мп) и сульфида натрия (для маскирования меди) [320]. [c.84]

    Сплавы медно-цинковые. Методы определения кремния Сплавы медно-цинковые. Методы определения фосфора Бронзы оловянные. Методы определения меди Бронзы оловянные. Методы определения свинца Бронзы оловянные. Методы определения олова Бронзы оловянные. Методы определения фосфора Бронзы оловянные. Методы определения никеля Бронзы оловя1шые. Методы определения цинка Бронзы оловянные. Методы определения железа Бронзы оловянные. Методы определения алюминия Бронзы оловянные. Методы определения кремния Бронзы оловянные. Методы определения сурьмы Бронзы оловянные. Методы определения висмута Бронзы оловянные. Методы определения серы Бронзы оловянные. Метод определения марганца Бронзы оловянные. Метод определения магния Бронзы оловянные. Методы определения мышьяка Бронзы оловянные. Метод определения титана Сплавы медно-фосфористые. Технические условия Бронзы оловянные, обрабатываемые давлением. Марки Сплавы медно-фосфористые. Методы определения содержания фосфора [c.574]

    Большинство составляющих алюминиевых сплавов легко определяется методом атомной абсорбции. В ранних работах Гидли и сотрудников [31, 53], а также других авторов содержатся методики определения некоторых составляющих сплавов алюминия. В работе Белла [325] дана общая методика исследования алюминиевых сплавов. Белл не обнаружил никаких помех от различных компонентов сплава при определении Си, Мп, Mg, 2п, Ре, Сг, d, N1. Медь, по-видимому, увеличивает абсорбцию цинка в присутствии алюминия, но в недавней работе [326] отмечается, что этот эффект отсутствует, если использовать пламя воздух — ацетилен и трехщелевую горелку, Содержание магния и кальция в алюминии следует определять в присутствии лантана, который добавляют в качестве буфера. Образцы весом I г растворяют в 50% (по объему) НС1. Полученный раствор затем разбавляют таким образом, чтобы определяемый металл находился в оптимальном диапазоне концентраций. Если в растворе присутствует медь, то в него в процессе нагревания добавляют несколько капель 30%-ной Н2О2. Кремний отфильтровывают, если его концентрация превышает 1 % или если требуется произвести очень точное определение магния или меди. Отфильтрованный кремний удаляют с помощью НР и НЫОз, а остаток вновь растворяют в НС и добавляют к анализируемому раствору. При определении магния содержание алюминия в исследуемых и эталонных растворах поддерживается на уровне 1000 мкг/мл. В работе Белла при использовании двухлучевого прибора величина коэффициента вариации при определении цинка в различные дни составляла 0,7%. [c.178]

    При анализе сплавов на алюминиевой основе наблюдается зависимость результатов определений от структуры образца (при определени магния и меди в сплавах типа дюралюминия и др.) 1270, 150], для устранения которой приходится увеличивать интенсивность предварительного обыскривания. [c.164]

    Флашка [663] рекомендует после растворения осадка диметилдиоксимата никеля в НС прибавить избыток раствора комплексона П1 и после подщелачивания аммиаком оттитровывают этот избыток раствором сулы )ата магния в присутствии эриохромчерного Т. Этот метод пригоден для определения никеля в сплаве Сг—Ni— Fe [1059]. При определении никеля в ферритах после растворения объекта в смеси НС1 и HNO3 экстрагируют железо (И ) эфиром, а к аликвотной части добавляют избыток комплексона 1П, доводят pH раствора до 5—6, добавляют смесь гексаметилентетрамина и метилтимолового синего и оттитровывают избыток компле сона HI 0,05 М раствором нитрата свинца [1058]. В о учае определения никеля в сплавах Fe- o—Си железо маскируют триэтанолами-ном, медь — тиогликолевой кислотой [1060]. В одной порции раствора можно оттитровать вместе кобальт и никель. В другой порции кобальт при добавлении HgOg и K N переводят в устойчивое комплексное соединение и титруют один никель. [c.146]

    Мухина 3. С. Определение примесей в металлическом магнии высокой чистоты. Полярографический метод. [Определение железа, меди, свинца и цинка]. Тр. ЛЬ 117 (М-во авиац. пром-сти. СССР). [М Оборонгиз, 1949, с. 10—11. 4860 Мухина 3. С. Определение олова в алюмн-11иевых сплавах и других металлах. Зав. лаб,, 1950, 16, ЛГ 5, , 546—548, 4861 Мухина 3. С. Анализ ванны анодирования. [c.189]

    Литература. Определение железа в металлических алюминии, магнии, меди, цинке, никеле и в сплавах Н. S р е ск е г, W. Doll, Z. ana . hem., 152, 178 (1956). [c.763]

    Было найдено, что при 400—900° количественно реагируют с однохпористой серой окислы меди, железа, алюминия, магния, сернокислый барий [6], окислы циркония, бора [7], циркония, хрома и титана Выполнялись определения кислорода в сплавах никеля с вольфрамом и молибденом, в стали и металлических хроме и алюминии при содержании кислорода [c.155]

    Мастер демонстрирует последовательность операций при проведении анализа методом эмиссионной спектроскопии. В качестве примера можно провести определение примесей в алюминиевом сплаве. Заранее подготавливают образец анализируемого сплава, три эталонных образца алюминиевого сплава, содержащих определенные количества примесей — магния, меди, железа, марганца, и образец железа, служащий стандартом. Всем образцам придают форму электрода. Вставляют в спектрограф кассету с фотопластинкой и открьшают крьппку кассеты. В держатель электродов искрового генератора поочередно вставляют подготовленные образцы и снимают спектры в стандартных условиях возбуждения. Перед снятием каждого спектра сдвигают кассету с фотопластинкой. Проявленную пластинку с изображением всех спектров вставляют в спектропроектор, находят на экране линии, соответствующие примесям, с помощью микрофотометра оценивают их почернение в сравнении с эталоном и рассчитьшают их содержание в анализируемом образце. [c.213]

    Заслуженное признание метод получил только при измененном ходе аналива, предусматривающем одновременное отделение железа, меди, марганца и некоторых других компонентов сплава Осаждением их диэтилдитиокарбаминатом натрия [18.3]. В этом случае трилонометрический метод позволяет выполнить определение магния всего за 45—50 мин. [c.78]

    При определении кальция в магниевых сплавах в количестве сотых долей процента химическими методами встречаются затруднения одно из них — необходимость количественного отделения кальция от основы и ряда компонентов сплава. Более перспективен для этой цели метод фотометрии пламени. Спектр кальция в пламени смеси ацетилена с воздухом состоит из ряда атомных линий 393,4 396,8 422,7 ммк. Последняя линия наиболее интенсивна и чаще других применяется для анализа, равно как и молекулярные полосы (СаОН) с максимумами при 554 и 622 ммк. Интенсивность линии 422,7 ммк в пламени ацетилен — воздух пропорциональна концентрации кальция в растворах в интервале О—390 мкг/мл кальция [526]. Извертво, что соли железа, меди, цинка [527], а также хрома и бария [526, 528] понижают интенсивность излучений кальция. Этот эффект [529] более резко выражен в присутствии солей алюминия, титана, а также ванадия, урана [512] и других. Это усложняет определение кальция в сплавах на основе магния, содержащих значительные количества алюминия. Влияние алюминия устраняют, осаждая его аммиаком [530], бензоатом аммония или маскируя оксихинолином [531]. Следует отметить, что последний метод оказывается непригодным для сплавов с 7—10% А1. Определение может быть выполнено при помощи спектрофотометра пламени по линии 422,7 ммк или по полосам гидроокиси кальция, а также на фотометрах Zeiss, ППФУНИИЗ, или ФПФ-58 по полосе гидроокиси кальция с максимумом 622 ммк. [c.319]

    Разработаны методы определения различных элементов, например марганца, хрома, ванадия, никеля в черных металлах, магния, молибдена, никеля, цинка и меди в алюминиевых сплавах меди, никеля и цинка в электролитах гальванических ванн, цинка в латуни и бронзе аниона 80 в электролитах гальванических ванн, ваннах анодирования, фторосолях и алюминатных растворах, воднорастворимой фосфорной кислоты в суперфосфатах 6 и многих других. [c.455]

    С. Мухина, Е. И. Никитина, Л. М. Буданова, Р. С. Володарская, Л. Я. Поляк, А. А. Тихонова. Методы анализа металлов и сплавов. Обороигиз, 1959, (528 стр,), 15 книге рассмотрены методы анализа сталей, чугунов, жаропрочных сплавов, ферросплавов и н1лаков, а также сплавов на основе алюминия, магния и меди. Приведены методики определения большого количества легирующих элементов в этих материалах. Вводная глава содержит характеристику физико-химических методов анализа. [c.491]

    Комплексонометрический анализ различных сплавов, руд и концентратов. При комплексонометрическом анализе сложных объектов используют обычные приемы химического разделения (осаждение, ионный обмен, экстракция и т. д.) и маскировки (цианидом, фторидом, триэтаноламином, оксикислотами и другими реагентами), но почти все компоненты определяют комплексо-нометрическим титрованием. Например, при анализе сплавов цветных металлов, содержащих медь, свинец, цинк и алюминий (бронзы, латуни и т. д.), медь определяют иодометрически, а свинец и цинк — комплексонометрически после оттитровывания меди. Перед определением свинца цинк маскируют цианидом, алюминий — фторидом и титрование производят в присутствии соли магния. Затем демаскируют цинк, связанный в цианидный комплекс, раствором формалина и титруют ЭДТА. [c.244]

    Определению титана при помощи диантипирнлметана не мешают ионы магния, алюминия, цинка, кадми , марганца, меди, циркония, редкоземельных элементов, молибдена, ниобия и тантала, поэтому метод можно применять для определения титана в легких, черных и цветных сплавах. Ионы никеля, хрома и кобальта не реагируют с диантипирилметаном, но мешает собственная окраска ионов поэтому раствор сравнения должен содержать все компоненты, кроме диантипирилме-тана. Ионы железа (III) и ванадия (V) предварительно восстанавливают гидроксиламином. [c.374]

    Во второе издание книги внесены следующие изменения и дополнения 1) согласно учебной программе, включены новые разделы Кальций , Магний и Фосфор 2) предусмотрено применение посуды из стеклоуглерода вместо дорогостоящей — платины 3) приведена методика определения меди в сплавах способом внутреннего электролиза с использованием катодов в виде тигля из стеклоуглерода (методика разработана преподавателями МИСиС В. П. Гладышевым и Л. 3. Козель) 4) приведен ряд новых методик (например, определения свинца, железа) некоторые методики исключены. [c.4]


Смотреть страницы где упоминается термин Определение магния меди и сплавах меди: [c.131]    [c.168]    [c.101]    [c.179]    [c.475]    [c.615]    [c.57]    [c.204]    [c.108]   
Аналитическая химия магния (1973) -- [ c.171 ]




ПОИСК





Смотрите так же термины и статьи:

Магний определение

Магний сплавы

Медь сплавы

Медь, определение

Определение меди в магнии

магния меди



© 2025 chem21.info Реклама на сайте