Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фрейндлиха экспериментальная

    Этот вывод и некоторые другие соображения, также говорящие в пользу зависимости подвижности от радиуса (влияние релаксации ионных атмосфер), все еще нельзя считать полностью подтвержденными экспериментально. Фрейндлих и Абрамсон (1927—1928 гг.) показали, что электрофоретическая подвижность частиц суспензий кварца и других веществ, покрытых адсорбированным яичным альбумином, не зависит от их размеров. Так как использовавшиеся при этом частицы были большими (>1 мкм), а толщина ионной атмосферы 1/и была мала (<10 см), то условие кг > 1 было выполнено и независимость от г объяснима. Однако Овербек в 1950 г. установил, что подвижность макромолекул яичного альбумина г = 2-10 см) та же, что и у больших частиц, покрытых альбумином, а это уже противоречит требованиям теории. В то же время Муни в 1924 г. нашел, что электрофоретическая подвижность мелких капель масла зависит от их величины. [c.140]


    Учитывая экспериментальный факт, что величины порогов коагуляции отвечают для различных электролитов одинаковым критическим значением -потенциала, Фрейндлих сделал два предположения во-первых, равные понижения -потенциала достигаются при адсорбции эквивалентных количеств различных ионов, во-вторых, из эквимолекулярных растворов, содержащих ионы различной валентности, адсорбируются равные количества молей. При таком предположении величины адсорбции ионов различной валентности [c.339]

    Большой интерес вызывают относительно мало изученные адсорбционные слои макромолекул. Действие защитных коллоидов в водных растворах известно уже сравнительно давно, и данной проблеме посвящен ряд феноменологических исследований [78, 109, 234]. Аналогичное влияние на устойчивость эмульсий и суспензий оказывают полимолекулярные слои ПАВ, возникающие при адсорбции из растворов ПАВ достаточно высокой концентрации. Несмотря на подробное экспериментальное исследование, причины стабилизации при введении в дисперсную систему защитных коллоидов до сих пор еще окончательно не выяснены. Фрейндлих [78] постулировал, что для достижения устойчивости необходимы особые свойства адсорбционных слоев прочность, наличие ориентации молекул и их достаточно высокая энергия связи с подложкой. [c.116]

    На основе полученных нами в этой работе экспериментальных данных мы можем отметить следующие основные положения, которые полностью подтверждают указанный нами механизм протекания реакции через истинный раствор. В том случае, если бы, как предполагал Фрейндлих с соавторами и Зауер и Штейнер, реакция происходила лишь при соударении частиц, скорость ее определялась бы произведением концентраций реагирующих золей. [c.148]

    Поскольку gLM является единственной составной частью е-потенциала, зависящей от концентрации электролита, то при соблюдении равенства изменение -потенциала и е-потенциала с концентрацией должно быть одинаковым и подчиняться одному и тому же закону. Подобное сопоставление можно провести например, следующим способом. Сначала, измельчив какое-либо нерастворимое твердое тело и измерив скорость электрофореза полученных частиц в растворе с переменной концентрацией электролита, определить величину дзета-потенциала как функцию концентрации. Затем в тех же растворах применить выбранное твердое тело как электрод и измерить его е-потенциал по водородной шкале. Результаты таких опытов показали, что отождествлять и е-потенциалы нельзя. Так, например, Фрейндлих (1925) выбрал стекло, применив его сначала как стеклянный электрод для определения е-потенциа-да, а затем — в виде тонких капилляров — для проведения электроосмоса и расчета -потенциала. Найденные им зависимости е- и -по-тенциалов от концентрации хлорида калия и нитрата тория приведены на рис. 33, т которого видно, что е- и -потенциалы изменяются с концентрацией по разным законам. При этом оказывается, что С-потенциал изменяется с концентрацией не монотонно, а проходит в отличие от е-потенциала через минимум или максимум. По своей абсолютной величине -потенциал обычно меньше, чем е-потенциал, и стремится к нулю при повышении концентрации. В то время как знак е-потенциала сохраняется неизменным в широком интервале концентраций, знак -иотенциала может меняться на обратный и тем раньше, чем выше валентность ионов и чем сильнее их способность к избирательной адсорбции. Изменение знака -потенциала (так называемая перезарядка поверхности) приводит к тому, что для одной и той же поверхности раздела знак -потен-циала может быть йли одинаковым, или обратным знаку е-потенциала. Таким образом g-потенциал отличается по своей природе от е-потенциала. На основании свойств -потенциала можно заключить, что он представляет собой некоторую часть той доли общего скачка потенциала, которая целиком расположена в жидкой фазе. Именно потому, что -потенциал в отличие от е-потенциала лежит в одной и той же фазе, оказывается возможным прямое экспериментальное определение его абсолютной величины. Падение потенциала, соответствующее -потенциалу, должно быть локализовано на границе между слоем жидкости, непосредственно примыкающем к поверхности-твердого Тела (и связанным с ним при относительном движении жидкой и твердой фаз) и более глубокими ее слоями, удаленными от поверхности раздела фаз. [c.246]


    Устойчивость и коагуляция связаны непосредственно с взаимодействием частиц дисперсной фазы между собой или с какими-либо макроповерхностями. Это взаимодействие также определяет адгезию частиц к макроповерхностям и структурообразование в дисперсных системах. Поэтому в основе любой теории устойчивости лежит соотношение между силами притяжения и отталкивания частиц. Существует единое мнение в отношении природы сил притяжения, которые обусловлены межмолекулярными силами Ван-дер-Ваальса. Силы же отталкивания между частицами могут иметь разную природу, соответствующую факторам устойчивости. Предложено несколько теорий, объясняющих те или иные экспериментальные факты с различных позиций (Дюкло, Фрейндлих, Мюллер, Рабинович, Оствальд и др.). Однако все эти теории были односторонними, они не учитывали и не объясняли многие факты. Создание общей количественной теории устойчивости дисперсных систем оказалось крайне трудной задачей. [c.325]

    Однако дальнейшие исследования коллоидных систем, особенно изучение зависимости их устойчивости от наличия и концентрации электролитов в растворе, детальное изучение движения частиц в электрическом поле показали недостаточность представлений дисперсоидологии для понимания свойств коллоидных систем. Экспериментальные данные по осаждению коллоидов электролитами (коагуляция коллоидов) получили Шульце (1882) и Гарди (1900), позднее обширные исследования произвели Фрейндлих и Кройт теорию кинетики коагуляции разработал Смолу-ховский (1916) большое значение имело также развитие работ по теории адсорбции и строению поверхностных и мономолекулярных слоев (1917, Лангмюр 1890, Рэлей и др.). В России в этот период важные работы провел Ду-манский (с 1903 г., измерения электропроводности в коллоидных растворах, в 1913 г. применение центрифуги для определения размеров частиц), который с 1912 г. начал читать первый курс коллоидной химии. Весьма важным явилось открытие хроматографии Цветом (1903), исследования поверхностного натяжения растворов Антоновым (1907) и Шишковским (1908), исследования по адсорбции Титова (1910), Шилова (1912) и Гурвича (1912), создание противогаза Зелинским (1916) и т. д. [c.10]

    Фрейндлих и др. провели кинетические исследования замыкания цикла галогеналкиламинов с образованием циклических иминов. В первой работе этой серии [10] приведены экспериментально установленные величины констант скорости циклизации 8-хлорбутиламина в пирролидин и е-хлорамил-амина в пиперидин. Авторы не смогли, однако, определить константу скорости циклизации 7-хлорпропиламина в азетидин и з-за преобладания побочных реакций оценка величины этой константы скорости (/225- около 0,003), как было показано позднее, оказалась слишком завышенной. [c.67]

    Известно, что гидрофобные (олеофильные) коллоиды в водной среде чувствительны к добавкам электролитов и коагулируют при определенной их концентрации. Из многочисленных экспериментальных данных известно также, что потеря устойчивости гидрофобными коллоидами и их коагуляция обусловливается двумя факторами уменьшением заряда частиц и адсорбцией добавленных электролитов. Влияние обоих этих факторов обычно накладывается одно на другое, но в некоторых благоприятных случаях каждое из них можно обнаружить независимо от другого. Еще в 1921 году Мацуно [104] сравнил коагулирующее действие комплексов кобальта различной валентности по отношению к золю сульфида мышьяка. Оказалось, что пороги коагуляции уменьшаются с увеличением валентности комплексных ионов в соответствии с правилом Шульце — Гарди [105]. Поскольку адсорбируемость этих комплексных ионов почти одна и та же, то, очевидно, различия в порогах коагуляции должны быть обусловлены главным образом различием в величине заряда этих ионов. Фрейндлих и Бирштейн [106] сравнили пороги коагуляции гомологов натриевых солей жирных кислот ( i — Се) по отношению к золю окиси железа, а также алкилзамещенных (Сг С12) аммонийхлоридов по отношению к золю сульфида мышьяка. Они обнаружили, что пороги коагуляции закономерно уменьшаются с увеличением числа атомов углерода в цепях ионов электролитов и что, таким образом, соблюдается правило Траубе [107]. Следовательно, в этом случае полученные результаты определяются в основном различиями в адсорбируемости указанных одновалентных органических электролитов. [c.254]

    Вильгельм Оствальд (1853—1932) родился в Риге, был сначала профессором в местном Политехникуме, затем профессором в Лейпциге, где основал Институт физической химии, который вскоре приобрел мировую славу. В период преподавания в Риге (1882—1887) Оствальд стал известен рядом работ по изучению химической динамики, в которых развивал представления о контактном, или каталитическом, действии. Новый период научной деятельности Оствальда начался с основания Журнала физической химии (1887) после того, как Аррениус выступил с теорией электролитической диссоциации. Деятельность Оствальда как ученого характеризуется теоретической разработкой общих принципов химии, экспериментальными исследованиями активности кислот и оснований и вообще проблемы химического сродства, изучением каталитического окисления аммиака и т. д. В Лейпцигской лаборатории сформировалось много известных химиков, таких, например, как Нернст, Ле Блан, Джонс, Бредиг, Боденштейн, Фрейндлих, Друккер, В. Бёттгер, П. Вальден и др. [c.405]


    Прямые экспериментальные нсследования, прп которых измерялись как е-нотенциал, так и -потенциал в одной и той н е системе, показывали, что эти два потенциала не только не равны, но и изменяются неодинаково при изменении состава фаз. Такое сопоставление обоих потенциалов для системы стекло — водный раствор электролита впервые ировелн Фрейндлих и Эттиш. Они определяли е-нотенциал при помощи стеклянного электрода, а -потен-цнал вычисляли но потенциалу течения соответствующих растворов. Результаты этой работы, подтвержденные вно- [c.101]

    Однако дальнейшие исследования коллоидных систем, особенно изучение зависимости их устойчивости от наличия и концентрации электролитов в растворе, детальное изучение движения частиц в электрическом поле показали недостаточность представлений дис-персоидологии для понимания свойств коллоидных систем. Экспериментальные данные по осаждению коллоидов электролитами (ко-агуляция коллоидов) получили Шульце (1882) и Гарди (1900), позднее обширные исследования произвели Г. Фрейндлих и Г. Кройт теорию кинетики коагуляции разработал М. Смолухов-ский (1916) большое значение имело также развитие работ по теории адсорбции и строению поверхностных и мономолекулярных слоев (И. Лангмюр, 1917 Ж- Рэлей, 1890 и др.). В России в этот период важные работы провел А. В. Думанский (с 1903 г., измерения [c.9]

    Экспериментальные наблюдения за поведением частиц в электрическом поле показали, что устойчивость обусловлена наличием одноименных электрических зарядов на поверхности коллоидных частиц. Одновременно выяснилось, что для устойчивости золя (лиофобного) необходимым условием является присутствие в нем еще и третьего компонента—стабилизатора. Стабилизаторами чаще всего могут быть те или иные электролиты. Для объяснения природы заряда на поверхности коллоидных частиц и многообразных явлений в золях (например, коагуляции, старения) в начале нашего столетия были заложены основы мицеллярной теории строения золей (Дюкло, Фрейндлих, Паули), вы- винувшей понятие о мицелле, как новой, более высокооргани- ованной, дискретной единице вещества. [c.17]

    В. Гиббс теоретически установил зависимость между адсорбцией и поверхностным натяжением. Г. Фрейндлих и И. Лэнгмюр установили связь между величиной адсорбции и равновесной концентрацией адсорбирующегося вещества. А. Эйнштейном и М. Смолухов-ским развита современная молекулярно-статистическая теория броуновского движения, получившая полное подтверждение в экспериментальных работах Ж. Перрена и Т. Сведберга. Г. Кройт предложил теорию коагуляции высокомолекулярных соединений. [c.10]

    На основе адсорбционной точки зрения и учитывая экспериментальный факт, что величины порогов коагуляции отвечают для различных электролитов одинаковым критическим значением -потенциала, Фрейндлих сделал два предположения во-первых, равные понижения -потенциала достигаются при адсорбции эквивалентных количеств различных ионов, во-вторых, из эквимолекулярных растворов, содержащих ионы различной валентности, адсорбируются равные количества молей. При таком предположении величины адсорбции ионов различной валентности должны отвечать одной и той же изотерме адсорбции (за исключением ионов, обладающих особенно большой адсорбируемостью, например ионы красителей и алкалоидов). Таким образом, правило валентности Щульце — Гарди объясняется различной адсорбируемостью ионов частицами золя. [c.338]

    Экспериментальные данные по строению поверхностных пленок наряду с измерениями устойчивости пен позволили сделать шлычевие, что основным фактором для получения устойчивых пузырьков является не поверхностное натяжение [67] или вязкость раствора, а наличие в поверхностном слое пластичных" тве] образований . Это мнение разделяет также и Фрейндлих [ "  [c.99]


Смотреть страницы где упоминается термин Фрейндлиха экспериментальная: [c.100]   
Фазовые равновесия в химической технологии (1989) -- [ c.20 ]




ПОИСК





Смотрите так же термины и статьи:

Фрейндлиха



© 2025 chem21.info Реклама на сайте