Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гидроксилирование непредельных соединений

    Известно, что гидроксилирование непредельных соединений протекает как //мс-присоединение, если окисление проводится перманганатом калия в водной среде (см. разд. 1.2.3.1). [c.446]

    На начальных стадиях озонирования (3 мин), соответствующих присоединению около 2 моль окислителя на 1 моль вещества, значение pH среды практически не сказывается на скорости разложения 2,4-Д (см. рис. 36). Этот результат согласуется с механизмом окисления фенолов озоном, предусматривающим раскрытие ароматического кольца [130], так как если предположить в качестве лимитирующей стадии процесса гидроксилирование ароматического кольца, то скорость окисления 2,4-Д озоном при переходе от щелочных растворов к кислым уменьшалась бы. Основное превращение 2,4-Д (75 %) под действием озона протекает в нейтральных и щелочных растворах с достаточно близкими скоростями, в кислых средах процесс несколько замедляется (см. рис. 36). По-видимому, первичные продукты, образующиеся в результате деструкции ароматического кольца, в условиях низкого значения pH разлагаются более медленно. Сопоставляя глубину деструкции 2,4-Д озоном при разных значениях pH и накопление хлорид-ионов в растворе, можно предположить, что наблюдаемое в щелочной среде максимальное содержание хлоридов объясняется гидролизом промежуточных продуктов реакции. Такими соединениями могли быть хлорангидриды соответствующих кислот — продукты озонолиза хлор-замещенных непредельных кислот (муконовой и малеиновой). Однако сравнение ХПК исходного раствора гербицида (42,7 мг О в 1 дм при концентрации 40 мг/дм ) и раствора после озонирования, содержащего стехиометрическое количество хлорид-ионов, при отсутствии препарата в пределах его обнаружения (11,4 мг/дм ), свидетельствует о накоплении хлорид-ионов в щелочной среде преимущественно за счет глубокого деструктивного окисления 2,4-Д озоном. [c.107]


    Превращение ароматического углеводорода в хинон представляет собой стадию более глубокого окисления, чем рассмотренные выще реакции окислительного гидроксилирования с получением фенолов. Образование хиноидной системы приводит к потере. соединением ароматического характера и появлению высокой реакционной способности, свойственной непредельно-кольчатым соединениям. [c.517]

    Предельные и непредельные жирные кислоты играют важную роль в живой природе. Они входят в состав глицеридов, образующих основу клеточных мембран, и их следует классифицировать как биологически важные соединения. Непредельные алифатические кислоты — линолевая, линоленовая и арахидоновая, кроме этой функции, выполняют и другую, не менее важную. Освобождаясь из состава глицеридов и подвергаясь действию окислительных ферментов, они дают начало последовательностям реакций, приводящих в конечном счете к гидроксилированным непредельным соединениям с высокой биологической активностью. Из линолевой и линоленовой кислот образуются метаболиты с восемнадцатью углеродными атомами в цепи, из арахидоновой — двадцатизвенные. Много биологически активных веществ встречается также среди окисленных производных специфических разветвленных длинноцепных кислот, продуцируемых отдельными организмами. [c.28]

    В единственном описанном случае гидроксилирования непредельного соединения перманганатом калия, протекающем с высоким выходом (Тишлер, 1955), образующийся вначале цис-глнколъ (I) немедленно теряет нем и превращается в а-кетол II  [c.225]

    Образующиеся продукты присоединения, содержащие водород у соседнего с гидроксилированным атома углерода, отщепляют воду и превращаются в непредельные соединения. В реакциях Перкина и Кнёвенагеля дегидратация протекает настолько эффективно, что выделить оксисоединения обычно не удается. В других случаях дегидратацию можно осуществить, создавая более жесткие условия. Так, если проводить альдольную конденсацию при нагревании, можно сразу же получить непредельное карбонильное соединение продукт кротоновой конденсации аналогично можно оксинитросое-динение превратить в непредельное нитросоединение. [c.129]

    Диазофлуорен был использован для определения реакционной способности двойной связи в различных непредельных соединениях. Реакция непредельных ннтросоединений с диазосоединениямн открывает широкие возможности синтеза самых различных соединений ряда пиразолина, пиразола и циклопропана. Полученные производные могут быть подвергнуты дальнейшим превращениям (восстановлению, гидроксилированию, окислению до карбоновых кислот). [c.318]


    Н. А. Высоцкая с сотрудниками исследовала кинетику и механизм процессов гидроксилирования органических веществ различными перекисными соединениями и механизм радиационного окисления органических соединений. И. П. Грагеров с сотрудниками изучил механизм окисления ряда органических веществ разнообразными окислителями, Л. В. Сулима — механизм взаимодействия перекисей с непредельными соединениями, А. С. Фоменко с сотрудниками — механизм катодного образования перекиси водорода и ее разложения в различных условиях. [c.28]

    Реакция Виттига. При действии этоксикарбонилметилентрифенил-фосфорана на производное аль-формы сахара образуется транс-непредельное соединение. При гидроксилировании двойной связи и гидролизе образуется альдоновая кислота высшей альдозы  [c.155]

    Известны два стереоизомера эстриола. В 16-эпиэстриоле (изоэстри-оле-А) , полученном при восстановлении кетола III водородом в присутствии платинового катализатора в слабощелочной среде, гидроксильная группа при j, должна занимать, как и в эстриоле, -положение гидроксильная группа при i6, очевидно, также должна иметь 3-конфигурацию, так как соединение образует ацетонид. Третий изомер, 17-эпиэстриол , был получен гидроксилированием непредельного промежуточного соединения и, следовательно, должен обладать цис-конфигурацией (16а, 17а). При испытаниях, проведенных с неполовозрелыми и кастрированными [c.310]

    Следует иметь в виду, что активирование метильной или метилено-вой группы олефии овой двойной связью не всегда удается использовать для получения непредельных карбонильных соединений, так как двойная связь С=С в общем быстрее поддается действию кислотных окислителей и перманганата калия (с гидроксилированием и расщеплением углерод-углеродной связи, ср. разд. Г,4.1.6 и Г,6.5.1), 1чем алкильная группа. Для подобных селективных окислений пригодны кислород и двуокись селена (см. разд. Г, 6.2.3). Таким образом, например, в промышленности получают акролеин из пропилена окислением кислородом в газовой фазе при 350—400°С над катализатором (окись меди). Акролеин далее через аллиловый спирт превращают в глицерин (см. разд. Г,4.1.6). [c.9]

    Обычно соединение, содержащее двойную углерод-углеродную связь п карбонильную группу, проявляет свойства, характерные для обеих функциональных групп. Непредельный сложный эфир или непредельный кетон по двойной углерод-углеродной связи вступают в реакции электрофильного присоединения кислот и галогенов, гидрирования, гидроксилирования и расщепления по карбонильной группе ога участвуют в реакщ ях нуклеофильного замещения, типичных для сложных эфиров, или нуклеофильного присоединения, типичных для кетонов. [c.914]

    При обработке С. д. в ТГФ в присутствии уксусной кислоты непредельные стероидные эфиры г ис-конфигурации типа (6) подвергаются аллильному гидроксилированию при С1Я П8в]. При этом образуются и а- и -спирты. Соединения (7) и (8) были использованы для получения 16-галокортикоидов. [c.386]

    Суммированы основные работы за 1965—1970 гг. по новым реакциям электрохимического синтеза органических соединений и новым идеям в области интенсификации процессов электросинтеза. Рассмотрены реакции анодного окисления углеводородов, спиртов, альдегидов, кетонов, карбоновых кислот и соединений других классов, реакции анодного замещения и присоединения — галоидирование, цианирование, нитрование, гидроксилирование, алкоксилирование, сульфирование, карбоксилирование, алкилирование и др. Приведены сведения об образовании элементоорганических соединений при анодных и катодных процессах. Рассмотрены катодные реакции восстановления без изменения углеродного скелета — восстановление непредельных ароматических, карбонильных, нитро- и других соединений с кратными связями, образование кратных связей при восстановлении, катодное удаление заместителей, а также реакции гидродимеризации и сочетания, замыкания, раскрытия, расширения и сушения циклов, в том числе гетероциклов. Рассмотрены пути повышения плотности тока, увеличения поверхности электродов, совмещение анодных и катодных процессов электросинтеза, применение катализаторов — переносчиков, пути снижения расхода электроэнергии и потерь веществ через диафрагмы. Описаны конструкции наиболее оригинальных новых электролизеров. Таблиц 2, Иллюстраций 10, Бйбл, 526 назв. [c.291]

    Следует иметь в виду, что активирование метильной или метиленовой группы олефиновой двойной связью не всегда удается использовать для получения непредельных карбонильных соединений, так как двойная связь С=С в общем случае быстрее поддается действию кислотных окислителей И перманганата калия (с гидроксилированием и расщеплением связи С—С см. разд. Г,4.1.6 и Г,6.5.1), чем алкильная группа. Для подобных селективных окислений пригодны кислород и диоксид селена (см. разд. Г,6.2.3). Например, в промышленности акролеин получают окислением пропена кислородом в газовой фазе при 350—400 °С над катализатором (оксид меди). Акролеин далее через аллиловый спирт превращают в глицерин (разд. Г,4.1.6). Аутоокисленнем пропена над катализатором (соль молибдена) при 200—500 °С и давлении 1 МПа получают акриловую кислоту, из изобутена аналогичным методом — метакриловую кислоту. Из бутена-2, а также его смеси с бутеном-1 окислением кислородом воздуха в присутствии V2O5 получают ангидрид малеиновой кислоты (разд. Г,6.5.1) в качестве побочных продуктов образуются уксусная, акриловая, кротоновая и фумаровая кислотш. [c.10]


    Действием этого реагента на а, р-непредельные карбонильные соединения в щелочной среде (см. стр. 166) получают соответствующие эпоксиальдегиды и кетоны, окислением карбоновых кислот в кислой среде синтезируют надкислоты (см. стр. 158). 30%-ный раствор перекиси водорода в уксусной кислоте позволяет окислять олефины в 1,2-диолы (реакция гидроксилирования см. стр. 167), а также окислять с расщеплением некоторые ароматические ядра (например, фенантре-новое в дифеновую кислоту). [c.156]


Смотреть страницы где упоминается термин Гидроксилирование непредельных соединений: [c.124]    [c.405]    [c.149]    [c.148]    [c.370]    [c.226]    [c.226]    [c.226]    [c.165]   
Механизмы реакций в органической химии (1977) -- [ c.184 , c.186 ]




ПОИСК





Смотрите так же термины и статьи:

Гидроксилирование

Соединения непредельные



© 2025 chem21.info Реклама на сайте