Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Воспламеняемость

    Воспламеняемость — склонность дизельного топлива к самовоспламенению, определяется периодом запаздывания его воспламенения и является почти таким же важным свойством, как и антидетонационная характеристика бензинов для карбюраторных двигателей. Период запаздывания зависит от цетанового числа. [c.37]

    Важное место в химмотологии занимает изучение процессов испарения и горения жидких топлив. Испаряемость, воспламеняемость и горючесть являются важнейшими эксплуатационными характеристиками бензинов, реактивных, дизельных и котельных топлив. Эти свойства в значительной мере определяют эффективность работы (мощность, надежность, экономичность) различных двигателей и энергетических установок. [c.98]


    Амины относятся к числу лучших горючих для жидкостных ракетных двигателей. Они обладают рядом положительных качеств низкой температурой воспламенения, большим газообразованием, относительно большой плотностью, широкими концентрационными пределами воспламенения, малым периодом задержки воспламенения. Хорошая воспламеняемость и высокая устойчивость сгорания обусловили очень широкое использование аминов в качестве горючих для жидкостных ракетных двигателей, несмотря на их сравнительно высокую стоимость. Наибольшее практическое применение как горючее получили анилин, триэтиламин и ксилидин. Амины обладают резкими неприятными запахами. Все они являются смертельными ядами. [c.123]

    Кроме концентрационных пределов воспламенения, воспламеняемость горючей смеси характеризуется минимальной (критической) энергией электрической искры. Дело в том, что не всякий искровой разряд в горючей смеси вызывает ее воспламенение, хотя температура такого разряда измеряется тысячами градусов. Для воспла менения и создания самораспространяющейся реакции горения необходима определенная минимальная энергия искрового разряда. [c.75]

    Из-за легкой воспламеняемости эфира его всегда выпаривают в специальных закрытых камерах с вентилятором, отсасывающим пары. Такие камеры называются вытяжными шкафами химики всегда ими пользуются, когда в ходе реакции образуются огнеопасные или ядовитые пары. [c.118]

    Эксплуатационные свойства. Важнейшими характеристиками дизельных топлив являются воспламеняемость, фракционный состав, нагарообразование, вязкость, температура помутнения и др. [c.37]

    К наиболее важным показателям качества топлив для быстроходных дизелей относятся воспламеняемость, испаряемость, вязкость, коррозионная активность, низкотемпературные и экологические свойства. [c.114]

    Воспламеняемость характеризует способность дизельного топ — лива к самовоспламенению в среде разогретого от адиабатического сжатия в цилиндре двигателя воздуха. [c.114]

    И наконец, весьма важным аргументом, который можно привести против применения непосредственного нагрева материалов, отличающихся повышенной текучестью и воспламеняемостью, является опасность открытого огня. [c.251]

    Ограничение воспламеняемости и горючести веществ [c.15]

    Пыль, оседающая на нагретых поверхностях, разогревается и с течением времени начинает тлеть. Установлено, что толщина слоя, при которой быстрее всего происходит воспламенение пыли, находится в пределах 10—20 мм. Для практических целей воспламеняемость пыли, осевшей на нагретых поверхностях, определяется минимальной продолжительностью нахождения пыли на поверхности (в мин) при заданной температуре до момента ее воспламенения пли наиболее низкой температурой поверхности, при которой начинается тление осевшей пыли. [c.263]


    Процессы окисления молекулярным кислородом топлив, масел, смазок и специальных жидкостей при длительном хранении, транспортировании и в условиях эксплуатации техники имеют большое значение в химмотологии, так как в ряде случаев указанные процессы определяют соответствующие эксплуатационные свойства горюче-смазочных материалов, например химическую и физическую стабильность, воспламеняемость и горючесть, склонность к нагаро- и лакообразованию, охлаждающую способность, коррозионную активность. Поэтому изучение общих закономерностей и механизма окисления углеводородов, особенностей окисления топлив и смазочных материалов в условиях их применения, а также изучение механизма действия ингибиторов окисления занимает важное место в теоретических основах химмотологии. [c.23]

    Было установлено, что для предварительной оценки топлив но их воспламеняемости и пригодности для применения можно использовать некоторые 3 физических i химических свойств. Предлагались самые различные качественные индексы, базирующиеся на таких характерист ках топлива, как анилиновая точка, плотность, вязкость, средняя температура кипения, содержание водорода. Эт 1 показатели служат неплохим подспорьем при отсутствии испытательного двигателя. Сравнение этих индексов [c.440]

    Воспламеняемость тлеющих слоев пыли [c.264]

    Большая часть применяемых в промышленности непредельных углеводородов и их производных имеет весьма широкие концентрационные пределы воспламенения, очень низкую минимальную энергию воспламеняемости их смесей с воздухом. Поэтому при аварийных утечках мономеров весьма часты случаи их взрывов в воздухе рабочих помещений на открытых установках. [c.338]

    Реактивное топливо должно легко воспламеняться нри любых температурах и давлениях оно должно сгорать ровно, без срыва и проскока пламени, не давая при горении никаких отложений. Зависимость между структурой топлива, с одной стороны, и температурой самовоспламенения, критической энергией восиламенения, задержкой воспламенения, пределами воспламеняемости, интервалом закалки, скоростью пламени и дымообразованием, с другой, — изучена рядом исследователей [369—3711. Стандартизуется также вязкость и плотность, от которых зависит распыляе-мость топлив [372]. [c.447]

    В табл. 38 приведены стандартные методы определения детонационной стойкости бензинов и воспламеняемости дизельных топлив. [c.206]

    К эксплуатационным свойствам ГСМ относятся энергетические свойства, воспламеняемость, горючесть, детонационная стойкость (антидетонационные свойства), склонность к нагаро-и лакообразованию, прокачиваемость, электризуемость топлив моюще-диспергирующие свойства моторных масел физическая и химическая стабильность, испаряемость, гигроскопичность, низкотемпературные, коррозионные, защитные, антифрикционные, противоизносные и противозадирные свойства, пожаро- и взрывоопасность, токсичность топлив, смазочных материалов и специальных жидкостей. [c.10]

    Гидрированный полиизобутилен способен снижать воспламеняемость масел. Добавление его в количестве 40% значительно повышает температуру воспламенения различных синтетических смазочных масел, в том числе эфиров и полиалкиленоксидов [59]. [c.501]

    С увеличением периода задержки воспламенения (0г) возрастает количество топлива, введенного к моменту его воспламенения одновременно улучшается однородность топливо-воздушной смеси и углубляется ее химическая предпламенная подготовка к самовоспламенению взрывного типа, по внешнему проявлению сходному с детонацией в двигателях с воспламенением от искры. Продолжительность периода 0,- зависит от воспламеняемости топлива, оцениваемой цетановым числом, от температуры и давления сжатого воздуха в момент начала впрыска топлива, от степени распыления топлива, турбулизации заряда и наличия в камере сгорания нагретых поверхностей. [c.157]

    Групповой углеводородный состав топлива оказывает существенное влияние на продолжительность периода задержки воспламенения. Наилучшей воспламеняемостью обладают парафиновые углеводороды, наихудшей — ароматические нафтены занимают промежуточное положение. Чем больше в топливе парафинов, тем выше его цетановое число, а следовательно, тем короче ПЗВ, тем ниже скорость нарастания давления (dP/d p) и мягче работа двигателя. [c.158]

    Эти свойства были определены опытным путем, хотя с научной точки зрения они очень мало интересны, в технике же они очень важны с точки зрения воспламеняемости и пожарной опасности. [c.201]

    Различные индексы, характеризующие воспламеняемость дизельных топлив [c.442]

    У фторуглеродов — высокая термостойкость низкая воспламеняемость, средние вязкостно-температурные характери- [c.500]

    По сравнению с карбюраторными двигателями дизели не пред — ъявл тют столь высоких требований к воспламеняемости топлива, какие предъявляются, например, к детонационной стойкости автобензинов. Товаэные дизельные топлива должны иметь ЦЧ в определенных опти (бальных пределах. Применение топлив с ЦЧ менее 40 приводит к жесткой работе дизеля и ухудшению пусковых свойств топлива. Повышение ЦЧ выше 50 также нецелесообразно, так как возрастает уделЕ.ный расход топлива в результате уменьшения полноты сгорания. Цетановое число дизельного топлива существенно зависит от его фраь ционного и химического состава. Алканы нормального строения и олофины имеют самые высокие ЦЧ, а ароматические ут леводороды [c.115]


    Концентрационные пределы воспламеняемости зависят от внешних условий диаметра трубы, направления распространения пламени, температуры, давления и других [159], однако в литературе нет определенных J численных характеристик влияния указанных факторов g на пределы воспламеняемости компрессорных смазок. -Большое значение имеют конструктивные особенности пневмосистемы. Теоретический расчет, учитывающий, что все вводимое в компрессор смазочное масло равномерно распределено в сжатом воздухе, показывает невозможность образования взрывоопасных концентраций на таких хорошо вентилируемых участках, как цилиндры, не только при полной загрузке компрессора [118], но даже и при значительно меньшей [155]. Из всех аварий в воздушных системах ни в одном случае не было взрыва самого компрессора (цилиндров). Взрываются нагнетательные трубопроводы, холодильники, ресиверы. Эти взрывы происходят в результате местных повышений концентраций масла в воздухе. Одним из факторов, способствующих образованию повышенных концентраций, является плохая вентиляция, например наличие застойных зон в сосудах и трубопроводах, глухих мешков, тупиковых отростков, сильно разветвленной и плохо контролируемой системы трубопроводов, отсутствие или нерегулярность продувки [45, 68, 79, 135, 151, [c.12]

    Было установлено, что конструктивные и эксплуатационные факторы, которые способствуют повышению температуры и давления воздуха, быстрому и интенсивному перемешиванию его с т опливом в цилиндре двигателя, улучшают воспламеняемость, тем самым процесс сгорания топлива и делают работу дизеля мягкой и жономичной. Положительное влияние на работу дизеля оказывают  [c.114]

    Цетановое число — показатель воспламеняемости дизельного топлива, численно равный процентному содержанию цетана в смеси с а-метилнафталином, которая по самовоспламеняемости в стан — дарт10М двигателе эквивалентна испытуемому топливу. [c.115]

    Температура. С ростом температуры давление паров смазочных масел быстро увеличивается. По данным [146], при давлении 6 кгс/см с повышением температуры от 40 до 80°С давление паров компрессорных масел возрастает в 40—100 раз, а при увеличении от 80 до 160°С — в 250—500 раз. Однако из того же источника видно, что концентрация наиболее легкого компрессорного масла при давлении 6 кгс/см и температуре 80°С составляла около 2,1 мг/м , а при увеличении температуры до 160°С—430 мг/м , оставаясь все же ниже концентрационного предела воспламеняемости. Очевидно, однако, что при температуре 180—200°С давление паров смазочного масла будет соответствовать взрывоопасным пределам. В то же время необходимо отметить большое )азличие в данных, приводимых в работах [146] и 162], что указывает на сложность экспериментального определения давления паров смазочных масел и возможную неточность результатов. [c.10]

    Как видно из рассмотрения влияния конструктивных и эк — сплу 1 гационных факторов и фракционного и химического составов топлив, требования дизелей и карбюраторных двигателей в боль — шин1 тве случаев противоположны. Противоположны и причины, обусчовливающие ненормальную работу этих типов ДВС топлива с высокой детонационной стойкостью обладают худшей воспламеняемостью. Используя эту закономерность, была выведена следующая эмпирическая зависимость между ЦЧ и 04 топлива  [c.115]

    Испаряемость дизельных топлив. Характер процесса сгорания / изельных топлив определяется, кроме их воспламеняемости, и полнотой их испарения. Она зависит от температуры и турбулен — ности движения воздуха в цилиндре, качества распыливания и испаряемости топлива. [c.116]

    Воспламеняемость реактивтнлх топлив обычно характеризуется концентрационными и температурными пределами воспламенения, самовоспламенения и температурой вспышки в закрытом тигле и др. По ГОСТу нормируется только температура вспышки (для ТС-1 и РТ 28, для Т-1>30 и Т-6>60 °С), а определение остальных перечисленных выше показателей предусматривается в комплексе квалификационных методов испытаний реактиви[а1х топлив. [c.122]

    Полиэфирные масла масла органических сложных эфиров) (polyesters - ). Эти масла по стандарту DIN 51 502 обозначаются буквой Е и составляют большую группу синтетических масел, особенно для реактивной авиации. В этой области они незаменимы, так как обладают наивысшим индексом вязкости (до 180), низкой температурой застывания (ниже - 50°С), плохой воспламеняемостью и низкой летучестью (давление насыщенного пара около 1 мбар при 205 °С). В автомобильной промышленности полиэфирные масла применяются в качестве добавок к минеральным маслам и ПАО, как повышающие индекс вязкости, улучшающие низкотемпературные свойства, а в некоторых случаях, самостоятельно в качестве моторного масла для дизельных двигателей или смазывания передач при низкой температуре. [c.18]

    Воспламеняемость при высыхании и соприкосновении с воздухом (кислородом) применяемого в производстве никелевого катализатора Ренея. [c.91]

    Воспламеняемость пылей, осевших на горячих поверхностях [c.263]

    Цетановое число — воспламеняемость дизельного топлива и прежде всего его пусковые свойства в быстроходных двигателях. Цетановое число численно равно процентному по объему содержанию цетана в его смеси с альфа-метилнафталином, эквивалентной по самовоспламеняемости испытуемому топливу, при сравнении в стандартных условиях испытания. Самовоспламеняемость цетана условно принята за 100, самовоспламеняемость альфа-метилнафта-лина за 0. Цетановое число определяют по ГОСТ 3122—67. [c.14]

    Туман, брызги. В большинстве режимов работы компрессора смазочное масло не испаряется полностью, а выносится из цилиндра в виде аэрозолей, брызг и пленки. Первыми исследовали различие в воспламеняемости паров и туманов Габер и Вольф. Они определяли НКП для парообразного тетралина (тетрагидронафталина) и для его тумана. В первом случае он составил 41,6 г/м во втором — 40,9 г/м . Размер капель в тумане колебался в основном от 1 до 10 мкм и лишь около 20% капель имели размеры более 10 укх. [c.11]

    Эту серию исследований повторил Бургоне [138] ия компрессорном масле Шелл-Тальиа 30. Для капель диаметром 5—20 мкм НКП был равен 49 г/м , т. е. того же порядка, что и у тетралина. Исследования показали, что воспламеняемость тонкодисперсного тумана практически не отличается от воспламеняемости паров того же масла. Капли масла перед сгоранием переходят в паровую фазу. Однако теплотой испарения, которая на порядок меньше теплоты сгорания, практически можно пренебречь. Для грубодисперсного тумана с размером капель более 20 мкм НКП довольно быстро уменьшается с ростом диаметра капель. Эта зависимость показана на рис. 2 [138]. [c.11]


Библиография для Воспламеняемость: [c.445]    [c.312]   
Смотреть страницы где упоминается термин Воспламеняемость: [c.99]    [c.114]    [c.114]    [c.115]    [c.18]    [c.10]    [c.262]    [c.6]    [c.160]    [c.440]    [c.11]   
Смотреть главы в:

Полиэфирные волокна -> Воспламеняемость

Мономеры -> Воспламеняемость

Мономеры -> Воспламеняемость

Мономеры -> Воспламеняемость

Мономеры -> Воспламеняемость

Технология первичной переработки нефти и природного газа Изд.2 -> Воспламеняемость

Химико-технические методы исследования Том 3 -> Воспламеняемость


Горение (1979) -- [ c.40 ]

Статическое электричество в химической промышленности изд2 (1977) -- [ c.0 ]

Товарные нефтепродукты, их свойства и применение Справочник (1971) -- [ c.40 ]

Полиамиды (1958) -- [ c.68 , c.164 ]

Лекционные опыты по общей химии (1950) -- [ c.0 ]

Промышленные полимерные композиционные материалы (1980) -- [ c.349 , c.351 , c.356 ]

Справочное руководство по эпоксидным смолам (1973) -- [ c.57 ]

Основы общей химии Том 2 (1967) -- [ c.42 ]




ПОИСК







© 2025 chem21.info Реклама на сайте