Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гидроксиазобензол

    При длительном действии света изомер (11) перегруппировывается в 4-бром-2-гидроксиазобензол (12), т. е. кислород мигрирует к бензольному ядру, с которым не была связана Л -оксид-ная группа. При действии кислот (перегруппировка Валлаха) из обоих изомеров образуется 4-бром-4 -гидроксиазобензол (12а) с гидроксигруппой в незамещенном бензольном кольце. [c.417]

    ВАЛЛАХА ПЕРЕГРУППИРОВКА, изомеризация азокси-бензолов в и-гидроксиазобензолы под действием сильных к-т, напр.  [c.347]


    Наличие в молекуле субстрата водородной связи приводит в отличие от отмеченных выше небольших эффектов к сильному снижению константы скорости переноса протона на растворитель или другую молекулу. Два примера такого рода представлены в табл. 2.1 реакции гидроксид-иона с салицилат-ионом и с производным о-гидроксиазобензола. Наличие в молекулах этих субстратов внутримолекулярных водородных связей вызывает снижение константы скорости реакции в 1(Р—10 раз по сравнению с обычным переносом протона. Из схемы (2.1) следует, что перенос протона с этих двух субстратов на гидроксид-ион возможен только после разрыва внутримолекулярной водородной связи. Таким образом, изменение константы скорости переноса протона по сравнению с реакцией, контролируемой диффузией, в отсутствие внутримолекулярных водородных связей отражает различие в прочности [c.26]

    Б. Сплошные линии индекс активности. Обозначения 1 - жирорастворимый красный 2 - п-метоксиазобензол 3 - судан желтый 4 - судан красный 5 - п-аминоазобензол 6 - п-гидроксиазобензол. [c.359]

    Растворитель - бензол, сэндвич-камера. Заштрихованные зоны соответствуют перемещению веществ одним пятном. При уменьшении активности в первую очередь ухудшается разделение на образцах оксида алюминия с самой высокой удельной поверхностью. Из работы [100] 1 - масляный желтый 2 - судан красный 3 - индофенол 4 - судам черный 5 - примеси в Судане черном 6 - п-гидроксиазобензол. [c.367]

    Из бензола и неорганических реагентов получите не прибегая к реакции азотирования 4 гидроксиазобензол [c.239]

    Опыт 19. Получение п-гидроксиазобензола. В пробирку поместите 3—4 капли жидкого фенола (25) и 4—5 капель 10% раствора гидроксида натрия (12) до полного растворения фенола. Прибавьте 1 каплю полученного раствора к раствору бензолдиазонийхлорида, полученному в опыте 18. Появляется оранжево-красная окраска. [c.449]

    К фуппе каких красителей относится п-гидроксиазобензол Выделите в его молекз ле сопряженный фрагмент. [c.449]

    Известно [17-22], что гидрогенизацией замещенных 2-нит-ро-2 -гидроксиазобензолов получают 2Н-бензотриазолы, которые широко применяются в качестве УФ-абсорберов, замедляющих фотодеструкцию термопластичных полимерных материалов на основе полиолефинов, полистирола, поливинилхлорида и пр. Основная задача кинетических исследований реакций [c.359]

    Совокупность результатов, приведенных в табл. 1, свидетельствует о том, что гидрогенизация 2-питро-2 -гидроксиазо-бензола до 2Н-бензтриазола наиболее селективно протекает на нанесенных палладиевых катализаторах. На скелетном никеле селективность реакции надает на 10-23 %, а скорости гидрогенизации снижаются но сравнению с платиновыми и палладиевыми катализаторами в 2-4 раза [18]. Промотирование скелетного никеля титаном и молибденом вызывает рост селективности. Данные табл. 1 наглядно иллюстрируют влияние природы катализатора на интегральную селективность реакции жидкофазной гидрогенизации 2-нитро-2 -гидроксиазобензолов по 2Н-бензтриазолам, влияние же растворителя на селективность гидрогенизации 2-иитро-2 -гидроксиазобензолов еще более существенно. Так, гидрогенизация 2-нитро-2 -гидрокси-5 -метилазобензола в индивидуальных органических растворителях, за исключением алифатических аминов, независимо от природы катализатора, не позволяет получать высокие выхода целевого продукта [17-21]. Для достижения высокой селективности реакции но 2Н-бензтриазолам в состав растворителя необходимо вводить электронодонорные добавки - амины, или гидроксиды щелочных металлов в концентрации, обеспечивающей величины pH, нри которых происходит переход 2-нит-ро-2 -гидроксиазобензолов в соответствующие феноляты. В отсутствие в растворителе щелочных или основных добавок триазольная перегруппировка протекает с низкими скоростями и селективность реакции остается низкой [18-22]. [c.363]


    Данные табл. 1 наглядно иллюстрируют определяющее влияние свойств каталитической системы на селективность гидрогенизации замещенных 2-нитро-2 -гидроксиазобензолов по 2Н-бензотриазолам. В первую очередь, это связано с изменением скоростей отдельных стадий схемы химических превращений иод действием растворителя, однако, природа побочных и промежуточных продуктов гидрогенизации 2-нитро-2 -гидро-ксиазобепзолов и закономерности их химических превращений в литературе не обсуждаются. [c.363]

    Схема химических превращений замещенных 2-нитро-2 -гидроксиазобензолов в условиях реакции жидкофазной гидрогенизации, обобщающая результаты проведенных кинетических исследований [23-26], представлена на рис. 1. [c.364]

    Закономерности гомогенных превращений промежуточных продуктов в растворителях различной природы и состава наиболее подробно изучены на примере реакций гидрогенизации замещенных 2-нитро-2 -гадроксигидразобензолов [25, 26]. Результаты исследований показали, что гомогенные превращения 2-нит-ро-2 -гидроксигидразобензолов в растворе протекают по механизму гомогенно-каталитических реакций кислотно-основного типа и сопровождаются одновременным образованием четырех соединений [26] М-оксида замещенного 2П-бензотриазола, 2-нитро-2 -гидроксиазобензола, 2-нитроанилина и замещенного 2-аминофенола. Схема возможных химических превращений 2-нитро-2 -гидрокси-5 -метилгидразобензола в растворе приведена на рис. 2. [c.366]

    Из результатов кинетических исследований следует, что в водных растворах области максимумов селективности реакций гидрогенизации замещенных 2-нитро-2 -гидроксиазобензолов и констант скорости гомогенных превращений 2-нитро-2 -гидр-оксигидразобензола совпадают с точностью до 0,5 ед. pH. При pH выше 9.5 соотношение скоростей гомогенно- и гетеро-генно-каталитических стадий реакции обеспечивает максимально полное образование М-оксида замещенного 2Н-бензо-триазола. Повышение pH как в водных растворах, так и в бинарных растворителях алифатический спирт-вода приводит к росту селективности гидрогенизации по соединениям, содержащим бензотриазольный цикл. Это подтверждает ранее высказанное предположение об определяющем влиянии ионизации молекул промежуточных продуктов реакции гидрогенизации на скорость гомогенных превращений 2-нитро-2 -гидроксигидразобензолов [25, 26]. Таким образом, селективность гидрогенизации замещенных 2-нитро-2 -гидроксиазобензолов по продуктам, содержащим триазольный цикл, определяется, главным образом, кинетическими параметрами гомогенных стадий гетерогенно-каталитической реакции, на скорость которых природа и состав растворителя оказывают наиболее существенное влияние. [c.368]

    Наблюдаемые скорости реакций гидрогенизации и вклады параллельных направлений общей схемы химических превращений замещенных 2-нитро-2 -гидроксиазобензолов определяются тем, что в ходе реакции молекулы реагирующих веществ взаимодействуют с водородом, адсорбированным на поверхности катализатора, одновременно, как по нитро-, так и азогруппе. При варьировании природы и состава растворителя скорости гидрогенизации каждой из функциональных групп реагирующих веществ изменяются различным образом. Так, если в водных растворах 2-пропанола и растворитаче, содержащем гидроксид натрия, скорости гидрогенизации нитро- и азогрупп отличаются не более, чем в 4 раза, то в том же растворителе с добавкой уксусной кислоты скорость присоединения водорода по азогруппе [c.368]

    По мнению авторов [11, 26], основной причиной роста скорости гидрогенизации азогруппы в кислых средах является увеличение доли молекулярных форм водорода, наиболее активных в реакциях гидрогенизации ненасыщенных двойных связей [7, 29]. В водных растворах алифатических спиртов с добавкой уксусной кислоты, в которых скорости превращения азогруппы резко возрастают, достигается высокая селективность гидрогенизации 2-нитро-2 -гидроксиазобензолов по 2-нитро-2 -гидроксигидразобензолам, а в присутствии добавок гидроксида натрия концентрации данного промежуточного продукта падают более чем в 10 раз. В растворителях с оптимальной концентрацией гидроксида натрия скорости гидрогенизации нитро- и азогруппы в индивидуальных соединениях становятся близкими и вклад направления, приводящего к образованию К-оксида замещенного 2Н-бензотриазола, резко возрастает, что сопровождается ростом селективности реакции. Установленный экспериментально характер изменения наблюдаемых скоростей гидрогенизации нитро- и азогрупп в индивидуальных соединениях под влиянием природы и состава растворителя хорошо согласуется с изменением скоростей превращений нитро- и азогрупп в молекулах замещенных 2-нитро-2 -гидроксиазобензолов. [c.370]


    Таким образом, результаты проведенных исследований влияния природы и состава растворителя на кинетические закономерности гидрогенизации замещенных нитро-, азо- и 2-нитро-2 -гидроксиазобензолов свидетельствуют о том, что скорость и селективность реакций определяется количественными соотношениями скоростей гомогенных и гетерогенно-каталитичес-ких стадий схем химических превращений. Сопоставляя полученные данные с результатами проведенных нами адсорбцион-но-калориметрических исследований [32-34], можно сделать вывод о том, что изменение величин адсорбции водорода на активной поверхности ката.тизатора в результате количественного перераспределения индивидуальных форм адсорбата под действием растворителя будет приводить к изменению скоростей каталитических стадий реакции и оказывать влияние на ее селективность. В частности, в растворителях алифатический снирт-вода с добавкой гидроксида натрия реализуются оптимальные соотношения поверхностных концентраций форм водорода, что и приводит к росту селективности реакции по заме-щенным 2Н-бензотриазолам. Данное положение служит основой для разработки научно обоснованных методов подбора оптимальных каталитических систем для реакций жидкофазной гидрогенизации. [c.372]

    Все промежуточные продукты восстановления ароматических нитросоединений, за исключением нитробензола и устойчивого азобензола, иод действием сильных кислот перегруппировываются. При этом из фенилгидроксиламина образуется п-амино-фенол, из азоксибензола — п-гидроксиазобензол, а из гидразо-бензола — бензидин. (Напишите схемы образования этих веществ ) [c.260]

    Среди других соединений особый интерес представляют производные 2-гидроксиазобензола в качестве светостабилизаторов. К недостаткам азосоединений следует отнести их собственную окраску, благодаря чему последние непригодны для стабилизации бесцветных неокрашенных веществ. Азосоединения в форме хелатных соединений меди или никеля 2-гидроксиазобензола и его алкил-, арил-, гидрокси- и аминозамещенных продуктов, а также простых эфиров и эфиров карбоновых кислот, и далее соответствующих соединений фенилазо-р-нафтола описаны в качестве светостабилизаторов лолиэтилена, полистирола, ПВХ или полиамидов. Примером такого рода соединений может служить хелатное соединение никеля и фенил-азо-и-крезола [325, 1572, 2567, 3173]  [c.246]

    Э.нергичные восстановители (цинк, олово, чугунная стружка с соляной кислотой, сернокислый ванадий с серной кислотой, гидросульфит натр,ия в щелочном растворе, полисульфиды и др.) расщепляют азогруппу с образованием двух аминогрупп. Получается исходный амин, взятый для получения диазосоединения, и азосоставляющая, содержащая дополнительно аминогруппу. Например, в результате восстановления гидроксиазобензола получаются анилин и л-аминофенол  [c.91]

    Три структурных изомера присутствуют в комплексах металл— краситель (1 2), образующихся из о,о -дигидроксиазобен-зола, и они обнаруживаются при ТСХ на силикагеле Г в бензоле с ледяной уксусной кислотой (80 20 или 70 30) [46]. Были выделены различные структурные изомеры хелатов кобальта с производными 2-гидроксиазобензола на силикагеле Г с бензолом в качестве элюента [48]. [c.51]

    Гидроксиазобензол, транс- 12 Оранжево-желтый [c.57]

    Такую полосу легко не заметить. Аналогичная сильная водородная связь образуется в о-гидроксиазобензолах [55], в спектрах кото- [c.204]

Рис. 41. Молекулярная диаграмма 4-гидроксиазобензола а — основное состояние б — возбужденное состояние. Рис. 41. <a href="/info/92300">Молекулярная диаграмма</a> 4-гидроксиазобензола а — <a href="/info/9285">основное состояние</a> б — возбужденное состояние.

Смотреть страницы где упоминается термин Гидроксиазобензол: [c.165]    [c.165]    [c.259]    [c.71]    [c.167]    [c.23]    [c.595]    [c.653]    [c.679]    [c.401]    [c.70]    [c.258]    [c.240]    [c.364]    [c.366]    [c.369]    [c.370]    [c.371]    [c.247]    [c.259]    [c.311]    [c.300]   
Органическая химия (1998) -- [ c.222 , c.449 ]

Введение в химию и технологию органических красителей Издание 3 (1984) -- [ c.337 ]




ПОИСК







© 2025 chem21.info Реклама на сайте