Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фазовые состояния полимеров

    Фазовые состояния полимеров и их надмолекулярная структура (надмолекулярная организация) - один из самых сложных и противоречивых вопросов физики полимеров. Существующие представления о физической структуре полимеров и в частности целлюлозы еще далеки от совершенства. Практически все исследователи в настоящее время относят целлюлозу к кристаллическим полимерам. В соответствии с этим в данном учебнике надмолекулярная структура целлюлозы (строение ее микрофибрилл), а также физико-химические и химические свойства рассматриваются с позиций теории кристаллического строения. [c.236]


    Сложнее обстоит дело с анализом фазовых состояний полимера. В термодинамике различают кристаллические, жидкие и газовые фазы, отличающиеся друг от друга термодинамическими характеристиками (например, свободной энергией, плотностью и т. д.). Переход из одной кристаллической формы в другую сопровождается переменой характера кристаллической упаковки и является следствием изменения дальнего порядка. Переход в жидкое состояние происходит при полном разрушении дальнего порядка. Поэтому в отличие от кристаллических тел тела, находящиеся в жидком состоянии, называют стеклами, а фазовое состояние — стеклообразным. [c.21]

    Агрегатные и фазовые состояния полимеров [c.130]

Рис. 5.4. Взаимосвязь между агрегатными и фазовыми состояниями полимеров Рис. 5.4. <a href="/info/939508">Взаимосвязь между</a> агрегатными и <a href="/info/4022">фазовыми состояниями</a> полимеров
    Превращение функциональных групп у полимеров протекает с меньшей скоростью, чем у низкомолекулярных веществ. Это связано с влиянием на реакционную способность функциональных групп полимеров структуры их цепей (изоляция функциональных групп, характер соседних групп), формы макромолекул (рыхлый или плотный клубок), фазового состояния полимеров (кристаллическое или аморфное). Перечисленные факторы определяют доступность функциональных групп макромолекул для химического реагента. [c.15]

    Для определения фазовых состояний полимера и установления их фазовых превращений используют два типа критерием структурный и термодинамический. [c.182]

    Матвеев Ю.И., Аскадский АА. Фазовое состояние полимеров как след- [c.523]

    Таким образом, химические реакции полимеров имеют много общего с подобными реакциями их низкомолекулярных аналогов. Однако специфика полимеров вносит и существенные отличия. Для полимеров характерно неполное превращение реагирующих фупкциопальпых групп. Физическое, фазовое состояние полимеров может заметно влиять на это отличие—доступ реагента может быть облегчен или затруднен к местам расположения функциональных групп в макромолекулах. Поэтому характерным признаком продуктов химических превращений полимеров является их композиционная неоднородность. Классификация химических реакций полимеров учитывает изменения как химической, так и физической структуры макромолекул. Примеры полимераналогичных, внутримолекулярных и межмакромолекулярных реакций хорошо подтверждают этот тезис. Химические реакции определяют пути стабилизации и модификации свойств полимеров. [c.230]


    Соотношение длительности этих стадий определяется физическим и фазовым состояниями полимера при разрушении. На рис. 5.36 приведена диаграмма прочностных состояний аморфного полимера, в различных физических состояниях [c.328]

    АГРЕГАТНЫЕ И ФАЗОВЫЕ СОСТОЯНИЯ ПОЛИМЕРОВ Физические состояния полимеров [c.22]

    ФАЗОВОЕ СОСТОЯНИЕ ПОЛИМЕРОВ [c.355]

    Таким образом, изучение прочности полимерных материалов необходимо начать с рассмотрения основных особенностей физических и фазовых состояний полимеров. [c.11]

    Исследования теплоты растворения гелей желатины в широком интервале температур показали, что плавление гелей сопровождается поглощением скрытой теплоты в сравнительно узком интервале температур. Эти данные, а также дилатометрические измерения, показавшие, что при плавлении гелей желатины наблюдается изменение объема [111], позволили рассматривать процесс плавления гелей желатины как фазовый переход, связанный с кооперативным процессом разрушения структурной сетки геля [112]. Введение 8 М мочевины в исследуемую систему, которая разрушала структуру геля, снижало температуру и теплоту плавления гелей, а также смещало скачок температурного коэффициента объемного расширения гелей в сторону более низких температур. Характер перехода гелей в расплавленное состояние определялся фазовым состоянием полимеров, пз которых образовывались гели [113—115].  [c.72]

    На основании изложенного в предыдущих главах можно сделать вывод о влиянии фазового состояния полимера на изменение его свойств при наполнении. В присутствии наполнителя изменяются условия кристаллизации, а следовательно, общая степень кристалличности и характер надмолекулярных образований. Эти факторы, влияющие на свойства кристаллических полимеров и в отсутствие наполнителя, определяют также механическое поведение наполненных кристаллических полимеров. Следует иметь в виду, что часто наполнитель вводят в полимер именно с целью повлиять на характер кристаллизации и структурообразования и тем самым на его механические свойства. В кристаллические полимеры наполнитель вводят в меньших количествах, чем в аморфные, и возникновения структурной сетки наполнителя там не наблюдается. Как уже отмечалось, в случае достаточно тонких прослоек полимера между частицами наполнителя процесс кристаллизации тормозится, и в пределе кристаллизация может не происходить. [c.174]

    Данное исследование было посвящено сравнительному исследованию порядка, возникающего в полимерах в процессе ориентации молекулярных цепей. При постановке работы мы были заинтересованы в том, чтобы найти такие условия, при которых на одном и том же полимере можно было сохранить неизменной ориентацию полимерных цепей при изменении фазового состояния полимера. [c.118]

    Фазовые состояния. Полимеры могут существовать в кристаллическом, жидком (аморфном) и жидкокристаллическом (аморфнокристаллическом.) фазовых состояниях, различающихся степенью упорядоченности частей макромолекул в структуре полимера. При этом кристаллическая и аморфная фазы в полимере находятся в состоянии термодинамического равновесия  [c.374]

    Методы, связанные с электропроводностью и электрическим старением, могут быть отнесены к категории релаксационно-спектрометрических лищь с больщими оговорками. Как отмечалось, группы явлений, определяемых электропроводностью, старением и раз-рущением (пробоем), разумеется, зависят от релаксационного или фазового состояния полимером и поэтому могут, в известной мере, быть индикаторами этих состояний. [c.266]

    Разрушению реальных полимеров, как уже было сказано, предшествует деформирование образца Величина и характер деформаг1ии зависят от физического или фазового состояния полимера. При деформировании подведенная механическая энергия накапливается в образце в виде упругой энергии При образовании в образце микротрещины энергия изменяется, и ее изменение равно [c.324]

    Определение температурных границ работоспособности полимерных материалов занимает важное место среди технических измерений их механических свойств. Оно основано на том, что температурные зависимости модуля упругости позволяют выделить основные физические и фазовые состояния полимера, существенные для эксплуатации материала. Практически температурные границы, определяемые методами технической термомеханики, существенно уже, чем границы релаксационных (физических) или фазовых состояний, так как последние определяются при меньших нагрузках. [c.280]

    Число свободных ИОНОВ н электронов в диэлектриках чрезвычайно мало, поэтому их электропроводность незначительна и обусловлена преимущественно подвижностью макромолекул или их частей, определяющих, в свою очередь, подвижность ионов. Электрическая проводимость диэлектриков зависит от на-пряженности электрического поля, температуры, давления, физического и фазового состояния полимера, его структуры и состава [c.370]


    Межмолекулярное взаимодействие (высокая энергия когезии) оказывает решающее влияние на все свойства полимеров, делая последние резко отличающимися от низкомолекулярных соединений. Энергия когезии влияет на физическую структуру, на физические, физико-химические и химические свойства (химическую реакционную способность) полимеров. Межмолекулярное взаимодействие определяет агрегатное состояние из-за высокой энергии когезии у полимеров отсутствует газообразное состояние, и при нагревании они разлагаются. Межмолекулярное взаимодействие влияет на фазовое состояние полимеров, способствуя упорядочению макромолекул, в том числе кристаллизации, с образованием надмолекулярных структур различного типа (см. 5.3). Из-за высокой энергии когезии полимеры труднее растворяются, чем низкомолекулярные соединения, и для них труднее подбирать растворители (см. 7.1). Межмолекулярное взаимодействие делает полимеры химически менее реакционноспособными по сравнению с низкомолекулярными соединениями аналогичного химического строения, так как химическому реагенту для проникновения в массу полимера необходимо преодолеть энерг ию когезии. Внутримоле- [c.128]

    Наряду с изучением падлтолекулярпого строения аморфных полимеров большое и принципиальное значение имели работы В. А. Каргина в области исследования структуры и природы кристаллического состояния полимеров. Совместно с Г. Л. Слонимским он подверг теоретическому рассмотрению один из принципиальных вопросов — вопрос о фазовом состоянии полимеров. Анализируя принципиальную особенность полимерных систем, заключающуюся в том, что в случае гибких цепных макромолекул имеют место две структурные единицы — макромолекула и звено, выступающие в ряде процессов как независимые структурные единицы, В. А. Каргин впервые указал на расхождение структурных и термодинамических критериев оценки фазового состояния систем, построенных из макромолекул. Критический анализ термодинамических свойств кристаллических полимеров и самого понятия фазы в применении к таким сложным системам, как частично кристаллические полимеры, позволил прийти к однозначному выводу о том, что кристаллические полимеры представляют собой однофазные дефектные системы. [c.8]

    Существующие у полймеров сильные межмолекулярные взаимодействия и определенная степень гибкости макромолек> л приводят к возникновению надмолекулярных структур различного типа. Под надмолекулярной структурой понимагот взаимное расположение (способ укладки) в пространстве макромолекул и их агрегатов. Надмолекулярная структура непосредственно связана с фазовыми состояниями полимеров. В зависимости от способа и порядка в укладке макромолекул образуются разнообразные по структуре и ее сложности пространственно выделяемые элементы надмолекулярной структуры, различающиеся по внешнему виду в электронном микроскопе. [c.129]

    Фазовое состояние определяется только способом упаковки атомов или молекул (в случае полимеров макромолекул или определенных структурных элементов — структонов). Обычно способ упаковки можно характеризовать степенью порядка или типом симметрии. Важнейшими фазовыми состояниями полимеров являются кристаллическое, аморфное (структурно жидкое) и жидкокристаллическое. [c.320]

    Для понимания многих технологических и физико-химических процессов, происходящих в полимерных материалах, очень важно рассмотреть современные взгляды на фазовые состояния полимеров. Эти взгляды сложились, во-первых, на основе общих представлений о фазовых состояниях, разработанных применительно к низкомолекулярным веществам, и, во-вторых, на основе экспериментальных" данных о структуре полимеров, приведенных в пре-дыл)1дей главе. Прежде всего следует рассмотреть ряд оби[их вопросов, связанных с понятием фазы, фачовых состояний, фазовых переходов и свойств вещесга в различных фазовых состояниях. [c.125]

    Мы полагаем, что такие представления неверны Дейстпательно. вследствие малой подвижности макромолекул при температурах знапительно ниже полимер может в стеклообразном состоянии находиться практически сколь тодно долго, однако это состояние не равновесное, и фазовые превращения в нем невозможны. Как уже укалывалось, ниже и выше То фазовое состояние полимера одинаково (стр. 129). [c.191]

    В обоих случаях концентрацию пластификагора в образце определяют по разности масс до и после иабухания (весовые проценты пересчитываются на мольные и объемные). Для равномерного распределения пластификатора рекомендуется пластифипиро-ванные образцы нагревать в предварительно эвакуированных ампулах до 100—200 С (в зависимости от фазового состояния полимера и его способности к структурированию при нагревании)  [c.439]

    Термодинамические методы, при помощи которых впо. не возможно решение вопроса об истинном фазовом состоянии полимера, слишком трудоемки и неудобны в экспериментальном отношении. Рентгеноструктурные методы в обычно ч их виде не позволяют отличить друг от друга ориентированные аморфные и кристаллические полимеры, поскольку их анизотропия может быть обусловлена кристалличностью или являться простым отражением симметрии внешнего силового поля (на этом основано явление фотоупругости). Выход из затруднения был найден Катцом, предложившим использовать тот же рентгеноструктурный метод, но путем вращения при съемке непрерывно менять направление оси ориентации относительно оси пучка света. Так было доказано, что во время растяжения натурального каучука происходит не простая ориентация, а кристаллизация. [c.464]

    Выяснение механизма усиливающего действия наполнителей имеет большое значение для направленного улучшения физикомеханических свойств наполненных материалов. Механизм усиливающего действия наполнителей в пластмассах и резинах различен, поскольку последние в условиях эксплуатации находятся в вы-сокоэластическом состоянии. Следует также иметь в виду, что механизм усиления полимеров нельзя объяснить с какой-либо одной точки зрения. Для его понимания необходимо учитывать все факторы, влияющие на свойства материала химическую природу полимера и наполнителя, тип наполнителя (дисперсный, волокнистый, тканый и пр.), фазовое состояние полимера, адгезию полимера к поверхности, условия формирования наполненного полимера из раствора или распл ава или условия отверждения жидкого связующего, условия вулканизации и т. д. [c.251]

    Фазовое состояние полимера слабо влияет на ил, так как аморфная фаза в некристаллическом и кристаллическом состояниях полимера характеризуется близкими значениями плотности. Сильное влияние на оказывает микронеоднород-ная (в частности, надмолекулярная и надсегментальная) структура через образование субмикро- и микротрещин, которое происходит как нри получении полимеров, так и при воздействии на них внешних факторов или обработке (тепловой, механической) изделий. В полимерных волокнах прочность аморфных областей микрофибрилл, где цепи также находятся в ориентированном состоянии, примерно в три раза ниже прочности полимерного монокристалла (10—20 ГПа при 297 К) за счет перенапряжения цепей, равного хо = 3 по Зайцеву [3.6] (см. вьпне). Прочность бездефектного неориентированного аморфного полимера меньше, чем прочность полимерного кристалла в направлении ориентации его цепей, за счет увеличения флуктуационного объема в три раза. Снижение прочности вызывают микротрещины из-за концентрации напряжений. Для ориентированных кристаллических полимеров в итоге общий коэффициент перенапряжения равен >с = иоР, а для аморфных неориентированных полимеров и = 5. О промежуточных вариантах можно сказать следующее. Для неориентированного кристаллического полимера, в котором аморфная фаза не ориентирована, и = р. Для ориентированного аморфного полимера в случае предельной ориентации и = хо 5, а следовательно, его прочность должна быть в 3 раза больше, чем неориентированного кристаллического полимера, т. е. достигать прочности монокристалла в направлении полимерных цепей. Однако достигнуть предельно ориентированного состояния или близкого к нему практически невозможно. Следовательно, можно считать, что у является скорее характеристикой образца, детали, изделия, нежели полимера как материала. [c.115]


Смотреть страницы где упоминается термин Фазовые состояния полимеров: [c.40]    [c.191]    [c.439]    [c.47]    [c.283]    [c.324]    [c.344]    [c.284]    [c.439]    [c.10]    [c.131]    [c.53]    [c.81]    [c.4]    [c.199]    [c.99]    [c.16]    [c.72]   
Смотреть главы в:

Физико-химия полимеров 1963 -> Фазовые состояния полимеров


Теоретические основы переработки полимеров (1977) -- [ c.21 ]

Энциклопедия полимеров Том 2 (1974) -- [ c.323 ]

Основы технологии переработки пластических масс (1983) -- [ c.16 , c.21 ]

Химия и технология пленкообразующих веществ (1978) -- [ c.39 , c.43 ]

Прочность полимеров (1964) -- [ c.9 ]

Прочность полимеров (1964) -- [ c.9 ]




ПОИСК





Смотрите так же термины и статьи:

Полимер три состояния

Фазовые состояния



© 2025 chem21.info Реклама на сайте