Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

равновесие в растворах полимеров фазовые состояния

    Рассмотрим это явление с помощью схемы, приведен- ой на рис. 91, воспроизводящей фазовое равновесие в застудневающих системах. Раствор полимера с концентрацией Ха охлаждается от температуры Ту (точка а) до Т2 (точка в). В точке б система переходит через границу области двухфазного состояния. Этой точке соответствует истинная температура застудневания раствора Та, причем структурным остовом этого студня будет равновесная фаза с концентрацией полимера Хг- Отметим, что застудневание наступает тогда, когда неравновесный раствор, постепенно теряя растворитель, переходит в точке б через кривую температур текучести (она нанесена на рис. 91 в области расслоения пунктирной линией). [c.202]


    При переходе системы по линиям aa d b или aa g происходит испарение растворителя в области однофазного состояния раствора аа ). И хотя равновесные концентрации полимерной фазы для разных степеней пересыщения в области аморфного равновесия соответствуют равновесным концентрациям в рассмотренном выше случае, изменения исходной концентрации раствора полимера (точка а ) и его вязкости, как указывалось ранее, могут привести к различию конформационных наборов молекул, числа, размеров, продолжительности жизни флуктуационных образований и изменению спектра релаксационных процессов при фазовых превращениях. [c.39]

    Рассмотрим, как может сказаться на характеристиках полимерной фазы степень перенасыщения (переохлаждения) системы относительно точки перехода из одно- в двухфазное состояние (точка е) при полном гидростатическом разделении фаз. Пользуясь правилом рычага, из диаграммы аморфного фазового равновесия можно установить, что чем больше степень пересыщения, тем меньще объем полимерной фазы. Отсюда несложно сделать вывод, что при одинаковой исходной концентрации полимера в растворе (точка а) концентрация его при аморфном распаде в полимерной фазе тем выше, чем выше степень пересыщения (концентрации в точке больше концентрации в точке х у Очевидно, что если бы удалось предотвратить кристаллизацию и при последующих операциях (испарение, промывка, сушка) сохранить первоначальный объем полимерной фазы, то пористость непосредственно определялась бы степенью пересыщения раствора полимера относительно точки перехода из одно- в двухфазное состояние. [c.37]

    Здесь же следует отметить, что соотношение процессов истинной кристаллизации и перехода в жидкокристаллическое состояние, а также соотношение процессов распада растворов на аморфные фазы и распада на сосуществующие аморфную фазу и мезофазу могут быть рассмотрены, исходя из принципа независимости (суперпозиции) всех этих типов фазового равновесия. Этот принцип, отмеченный особо при рассмотрении суперпозиции равновесия аморфных фаз (жидкостной распад) и равновесия кристаллический полимер — насыщенный раствор полимера [26], справедлив и в указанных случаях. [c.64]

    Тер.модинамические параметры растворения зависят от химического строения цепи полимера, его гибкости, молекулярной массы, плотности упаковки макромолекул н фазового состояния полимера. Количественно растворяющая способность растворителя по отношению к данному полимеру оценивается по величине термодинамического сродства, мерой которого может служить разность изобарно-изотермического потенциала (AG) раствора и компонентов или разность между химическим потенциалом компонентов в растворе и чистого компонента (A(i,). При самопроизвольном растворении AG<0, А я,< 0. Чем больше абсолютные значения этих величин, т. е. чем дальше находится система от состояния равновесия, тем больше термодинамическое сродство между компонентами полимер — растворитель, тем лучше растворитель. [c.185]


    Технологические критерии качества растворителей (применительно к рабочим концентрированным растворам) основаны на легкости проведения технологического процесса. Обычно наиболее важным требованием является стабильность растворов, т. е. неизменность их свойств (вязкости, фазового состояния) во времени в достаточно широком концентрационном и температурном интервале, что позволяет вести процесс без особых затруднений даже при неизбежных в технологическом процессе колебаниях отдельных параметров. Представление о стабильности растворов в заданном интервале параметров, несмотря на свою технологическую природу, основано, прежде всего, на топологическом методе анализа фазового равновесия в поликомпонентных системах кроме того, устойчивость систем косвенно связана со степенью дисперсности (чем выше дисперсность, тем выше качество растворителя) и, наконец, чем выше степень дисперсности полимера, тем больше вероятность ь-ри условии максимального сохранения исходной полимерной стр , к-туры раствора получения пленки с максимальной проницаемостью и высокой эффективностью задержания частиц малого размера. [c.27]

    Пути перевода полимера из раствора в отвержденное состояние рассматривались в рамках топологического метода анализа применительно к простейшему, но одному из более общих случаев, когда полимер, выделяемый из раствора, способен кристаллизоваться. При переработке таких систем в определенных условиях возможна реализация аморфного и кристаллического фазового равновесия. [c.36]

    На рис. 1.12 приведена диаграмма фазового равновесия для такой системы. Исходное состояние раствора полимера обозначено точкой а конечному состоянию полимерной пленки соответствует точка с. [c.36]

    Следовательно, перевод струи прядильного раствора в фиксированное состояние на первой стадии формования волокон по мокрому способу осуществляется в соответствии с законами фазового равновесия в системе полимер — растворитель — осадитель, и с точки зрения физической химии его следует рассматривать как застудневание. Подробно эти представления были изложены ранее.  [c.109]

    Вопрос о соотношении кристаллизации и жидкокристаллического состояния был рассмотрен особо в предыдущем разделе этой главы. Сейчас же необходимо сделать некоторые замечания о соотношении двух типов фазового равновесия — жидкостного равновесия (расслоения на две аморфные фазы) и распада на изотропный и анизотропный растворы. Здесь еще раз следует напомнить ранее отмечавшееся положение о независимости различных типов фазового равновесия [26], что, в частности, касалось соотношения между жидкостным расслоением и кристаллизацией полимера. Указывалось на то, что при переводе раствора полимера в область нестабильную как в отношении кристаллизации, так и в отношении распада на жидкие фазы, второй процесс проходит быстрее, поскольку появление зародышей новой фазы предпочтительнее для аморфного равновесия, в то время как для появления критических по размеру зародышей кристаллической фазы необходимо сочетание (упорядочение) относительно большого числа молекул, причем это сочетание должно быть достаточно строгим (кристаллическая решетка). Только после распада нестабильного раствора на аморфные фазы в одной из них (концентрированной по полимеру) создаются более благоприятные условия для кристаллизации, так как благодаря значительному пересыщению вероятность возникновения зародышей кристаллической фазы резко возрастает. Таким образом, хотя минимуму свободной энергии и отвечает кристаллизация полимера, этот процесс предваряется образованием аморфных фаз полимера. [c.71]

    Фазовое равновесие полимеров играет важную роль в ряде процессов, например в процессах 1) смешения полимеров с пластификаторами, мономерами и другими жидкостями 2) испарения мономеров из растворов 3) смешения различных полимеров 4) плавления полимеров. Вплоть до настоящего времени ни для одного из этих процессов не дано достаточно хорошего количественного термодинамического описания, хотя работы в этом направлении ведутся и сейчас. Тот факт, что полимеры, как правило, не подвергаются многостадийным процессам разделения, не способствовал экономическому стимулированию исследований их фазового поведения. Кроме того, решение данной проблемы в определенной степени усложняется разнообразием возможных состояний полимеров. Это могут быть смеси, молекулярные массы компонентов которых соответствуют некоторому определенному диапазону, и аморфные стекловидные или каучукоподобные вещества, или же в зависимости от температуры и предыстории они могут иметь более одной кристаллической формы. Будет уместно процитировать замечание Бонди [190] относительно того, что его обзор литературы по термодинамике фазового поведения полимеров отражает недостаточный современный уровень знаний по этому вопросу. [c.455]

    Диффузионные процессы приводят к тому, что в системе полпмер — растворитель происходит смена растворителя на нерастворитель. Это означает с точки зрения представлений о фазовых равновесиях, что система с заданными параметрами (концентрация полимера, температура) оказывается в области распада на две фазы. Схематически это показано на рис. 111, где на диаграмме а представлено исходное состояние раствора (растворитель Р,), а на диаграмме б — состояние системы после замены растворителя на нерастворитель (Рг). [c.266]


    Имеются две основные модели, с помощью которых можно вывести уравнения, предсказывающие влияние как температурного градиента, так и градиента концентрации растворителя на эффективность фракционирования. Первая из этих моделей предложена Капланом [22]. Каплан приводит экспериментальные факты, свидетельствующие о том, что фазовая диаграмма для раствора аморфного полимера представляет собой асимметричную кривую смешения с критической точкой, весьма близко расположенной к ординате растворителя. Поэтому Каплан постулирует, что описывающая состояние разбавленного раствора полимера при охлаждении точка пересекает кривую смешения и в осадок выпадает очень вязкая или гелеобразная фаза, находящаяся в равновесии с гораздо большим объемом практически чистого растворителя. Эта модель предполагает, что разбавленный раствор подобного типа присутствует в любой содержащей полимер зоне колонки. Как следует из расчетов Бейкера и Вильямса, гель будет выпадать в осадок при температуре, соответствующей 0-температуре Флори [37], т. е. темиературе, при которой, согласно Флори, происходит разделение фаз в системе растворитель — полимер бесконечного молекулярного веса. Обогащение смеси лучшим растворителем приведет к растворению геля и последующему выделению его в осадок, но уже при меньшей темнед)атуре. Объем элюирующей жидкости, протекающей через колонку в любой момент времени, считается малым по сравнению с объемом, взятым для создания полного градиента концентрации растворителя. Следовательно, различием между составами растворителя в верхней и нижней частях колонки можно пренебречь, Исходя из этого, Каплан получил уравнение [c.101]

    Процесс 3. является самопроизвольным, идущим с уменьшением свободной энергии системы, причем как теплосодержание, так и энтропия системы в процессе 3. уменьшаются. 3. обратимо, но переход раствора в студень не является фазовым переходом. Самопроизвольное 3. раствора не является конечной стадией изменения системы во времени. 3. — кинетич. процесс, спонтанно развивающийся до наступления равновесного состояния, сопровождающегося разделением ранее однофазной системы на две фазы — равновесный студень постоянного состава и раствор высокомолекулярного вещества, находящийся в термодинамич. равновесии со студнем (синерезис студня). Если концентрация раствора соответствует равновесной концентрации студня, то 3. не сопровождается синерезисом. На характер процесса 3. существенное влияние оказывают полидисперсность полимера и наличие даже незначительных примесей. Последние приводят к тому, что неравновесное состояние может сохраняться в течение длительного отрезка времени. [c.42]

    Фазовое равновесие между кристаллическим полимером и его раствором отличается от равновесия между двумя жидкими фазами. Стабильность полимера в твердом состоянии определяется тем, что внутренняя энергия последнего меньше энергии полимера в жидком состоянии на определенную величину, зависящую от теплоты кристаллизации полимера А Г р. Указанная разность энергий в двух состояниях равна где Я — универсальная газовая постоянная и Г — абсолютная температура. [c.57]

    В связи с различным характером кривых фазового равновесия для разных фракций полимера принципиально возможна такая ситуация, когда при переводе раствора из области однофазного в область двухфазного состояния часть фракций полимера с низкой молекулярной массой остается растворенной. На рис. 1.3 это положение иллюстрировано переходом по липни аЬ, причем фракции с М, М2 и входят в состав образующейся [c.22]

    Кратко суммируя сказанное, можно отметить, что для растворов жесткоцепных кристаллизующихся полимеров вероятны различные последовательности фазовых превращений. По принципу суперпозиции фазовых равновесий и вследствие относительно малых скоростей кристаллизации полимеров изменение концентрации и температуры (или соответственно активности растворителя) может привести только к переходам изотропный раствор — анизотропный раствор. Но при выдержке во времени, особенно при повышенной температуре и при достаточно высоких концентрациях раствора, когда процессы кристаллизации ускоряются, полимер в растворе может закристаллизоваться, причем, как отмечено выше, последовательность переходов (изотропное, жидкокристаллическое, кристаллическое состояния) зависит от того, монотропна или энантиотропна рассматриваемая система. [c.68]

    В книге сделана попытка рассмотреть то общее, что объединяет различные виды переработки растворов полимеров, а именно физпко-химичсскис основы процессов растворения, формования и фиксации сформованных изделий, Рассмотрение ведется иа основе анализа равновесия фаз в системе полимер — растворитель. Хотя исследованию диаграмм состояния этой системы посвящено большое число публикацт , технологический аспект фазового равновесия до сих пор ие был представлен в обобщенном виде. [c.7]

    При рассмотрении фазового равновесия между крист 1ллическим полимером и его насыщенным раствором в первом приближении можно пренебречь влиянием набухания полимерной фазы. Для самопроизвольного перемещения цепных молекул из кристаллита в раствор в таком случае необходимо, чтобы сумма свободных энергий, соответствующая плавлению и разбавлению расплава растворителем, была отрицательной. Если при использовании уравнения Гиббса — Гельмгольца для расчета свободной энергии плавления пренебрегают температурной зависимостью скрытой теплоты плавления, а для расчета активности полимерного компонента используют уравнение (П-52), отнесенное к расплаву как стандартному состоянию, то подлежащее соблюдению условие можно выра- [c.71]

    Добавление нерастворителя в раствор полимера означает переход на диаграмме фазового равновесия от одной бинодали —с относительно низко расположенной критической температурой совместимости компонентов—к другой, у которой критическая температура совместимости лежит в области температуры эксперимента или превышает ее. Если в систему добавлено такое количество осадителя (нерастворителя), что критическая температура совместимости полимера с растворителем оказывается выше температуры эксперимента, то происходит распад системы на две фазы. На рис. 73 приведена схематическия объемная диаграмма состояния [c.171]

    Таким образом, с точки зрения фазового равновесия осаждение полимера или застудиевание раствора есть перевод системы путем добавления нерастворителя (осадителя) в состояние, при котором критическая температура совместимости находится выше (для систем с верхней критической точкой совместимости) или ниже (для [c.172]

    Вернемся теперь к рис. 10 и посмотрим, какие непосредственные сведения о структуре системы полимер—растворитель можно почерпнуть из анализа этой фазовой диаграммы. Прежде всего будем подниматься от более низких к более высоким температурам вдоль оси ага = 1. Если полимер аморфный, он последовательно проходит через все три релаксационных ( физических состояния стеклообразное, высокоэластическое и вязкотекучее. Они представляют собой разновидности жидкого фазового состояния с раз ][ичной степенью, замороженности сегментальной подвижности цепей. Все это хорошо известные вещи, но о них иногда забывают при рассмотрении фазовых равновесий. В сущности, для системы аморфный полимер—растворитель всегда реализуется фазовое равновесие типа жидкость—жидкость (ибо, говоря о равновесии, мы должны принимать во внимание именно фазовое, а не релаксационное состояние той или иной двухкомпонентной фазы. При достаточно высокой температуре, но ниже ВКТС, раствор вероятнее всего распадается на два обычных раствора различной концентрации. Нередко, используя такое разделение на две жидкие фазы для фракционирования (практически в этом случае чаще варьируется растворитель, но вскоре мы убедимся, что в принципе это ничего не меняет), говорят об образовании коацервата — из-за внешней аналогии с коацервацией в амфифильных электролитных системах. [c.103]

    Наглядно это можно было бы представить себе как размазывание бинодалей и спинодалей, в результате которого в казалось бы однофазной области могут существовать, и притом в течение длительного времени, гетерофазные флуктуации и даже макрофазы (неравновесные студни). При всей наглядности такое представление с чисто термодинамической точки зрения некорректно, если не выходить за рамки равновесной термодинамики обратимых процессов. Никакого парадокса в существовании неравновесных образований в равновесной области н самом деле нет просто достижение равновесия требует льшого времени — иногда очень большого. Об этом следует помнить при анализе фазовых равновесий в растворах полимеров. Кроме того, не следует упускать из виду и того, что разделение на фазы овеем не обязательно отвечает переходу в новое фазовое состояние. [c.134]

    Полициклизация в растворе лишена многих недостатков, присущих твердофазным способам. Из общих соображений для гомогенной полициклизации можно ожидать повышения скоростей и степени завершенности реакции отпадает необходимость учета фазового состояния полимера нет опасности разрушения волокна и т. д. Препятствием к применению этого способа служит низкая растворимость полигетероариленов с циклами в цепи. Для повышения растворимости полимеров с гетероциклами можно прибегнуть либо к их химической модификации, либо к подбору сильнодействующих растворителей. Первый путь пока представляется менее перспективным из-за значительного снижения термических характеристик полимера. Практическое применение получила полициклизация в серной кислоте, олеуме и полифосфорной кислоте. Физическая характеристика этих растворителей приведена выше. В последние годы в лабораторной практике стали применять кислоты Льюиса и растворители сульфонового типа. Растворяющая способность серной и полифосфорной кислот связана с протонированием гетероатомов и ароматических ядер кислот Льюиса — с возникновением координационных связей между этими кислотами и гетероатомами и ароматическими ядрами полимера [62]. Наряду с высоким растворяющим действием эти соединения являются сильными дегидратирующими агентами, что собственно и определяет их применимость в качестве реакционной среды для полициклодегидратации. Помимо этого ПФК обладает и каталитическим действием [63]. Считают, что она образует соль с диаминами, способствует повышению реакционной способности электро-фильного углеродного атома карбонильной группы. Показано присутствие фосфора в цепи полимера. Комплекс ПФК с амином находится в равновесии со свободным амином [c.58]

    Формование микрофнльтров с использованием осадительных ванн является наиболее сложным технологическим процессом вследствие многообразия явлений, протекающих в системе полимер— растворитель — осадитель. Осадитель используют при формовании как мокрым способом, т. е. при контакте раствора полимера с другой жидкостью без предварительной выдержки в газовоздушной среде, так и сухо-мокрым способом, т. е. при наличии стадии сухого формования. Можно сделать ошибочный вывод, что в последнем случае полимерную систему в студнеобразном состоянии вводят в жидкость лишь для отмывки системы от низкомолекулярной фазы. Действительно, цель процесса заключается в удалении низкомолекулярной фазы, однако при этом, поскольку полимерный каркас не представляет собой 100%-ный полимер, а является одной из фаз системы, включающей в себя полимер и растворитель, находящейся в равновесии с другой фазой системы, и появление в системе нового компонента (осадителя) должно привести к установлению в новой системе (полимер — растворитель — осадитель) фазового равновесия, отличного от фазового равновесия в первичном студне. Вклад в структуру готового продукта процессов, развивающихся на стадиях сухого и мокрого формования в сухо-мокром методе, будет рассмотрен далее. [c.54]

    Поскольку достигаемое при переработке морфологическое состояние полимерных объектов является результатом конкуренции между кинетическими факторами, с одной стороны, и требованиями термодинамического равновесия, с другой, это означает, что с кинетических позиций скорость процесса структурообразования должна быть мала, а равновесная полимерная фаза (на основе представлений о фазовых равновесиях и системах) должна иметь малый объем, т. е. в процессе образования полимерная фаза должна выжать из себя большую часть растворителя и осадителя. Как показывают практика формования волокон и теоретический анализ процесса перевода полимера из раствора в отвержденное состояние с помощью осадителей, осуществить подобный процесс нелегко. В ваннах с малой осаждающей способностью, в которых структурообразование протекает с малой скоростью, часто образуется высокопористый (в неориентированном состоянии) продукт при этом нередко происходит глобулизация структурных элементов полимерной фазы, что приводит к получению изделий с малой прочностью. Применение ванн с высокой осаждающей способностью, как правило, приводит к образованию продуктов с ма-крогетерогенной структурой. Для некоторых полимерных систем, используемых при получении ВПС, наиболее целесообразно применение глицерина. Эффективность его действия проявляется в тех случаях, когда глицерин оказывается сильным оса- [c.140]

    Различные рассмотренные фазовые равновесия и переходы в системах полимер — растворитель можно изобразить схематически, как это показано на рис. 30. Процесс 1 представляет собой обычное плавление или кристаллизацию полимеров, сопровождаемую конфор-мационными изменениями. При этом аморфная фаза III может содержать или не содержать растворитель, но состояние I всегда будет соответствовать чистой кристаллической фазе. Переход этой категории был рассмотрен на стр. 47 и 56. Образование изотропного разбавленного раствора П, в котором молекулы сохраняют конформационные характеристики кристаллического состояния /, обозначено как процесс 2. Его можно также рассматривать как обычное растворение, но с сохранением молекулярной конформации, в отличие от процесса 1. Обратный процесс представляет собой образование чистой упорядоченной фазы из разбавленного раствора анизотропных молекул. Переход спираль — клубок обозначен как процесс 3. Разбавленная тактоидная фаза / образуется из разбавленной изотропной фазы в результате процесса 2 при незначительном увеличении концентрации полимера. [c.74]

    Показано, что перевод струи прядильного раствора в фиксированное состояние на первой стадии формования волокон по мокрому способу осуществл>(ется в соответствии с законами фазового равновесия в системе полимер—растворитель—осадитель и что этот процесс следует рассматривать как студнеобразование. Студнеобразное состояние вискозных волокон характеризуется сетчатой структурой. Совершенство этой структуры, зависящее от состава осадительных ванн и параметров вискозы, имеет существенное значение во всем генезисе структуры и свойств волокна. [c.191]

    В связи с этим представляет интерес рассмотреть хотя бы теоретические расчеты для таких систем. Приведенные выше уравнения фазового равновесия позволяют рассчитать фазовые диаграммы в координатах состав —параметр взаимодействия Х1 Для случаев не-атермических систем с участием полимеров с полугибкими цепями. Такой расчет был выполнен Миллером и др. [14] для частного случая /=0,1 и для /=0. Результаты этих расчетов приведены па рис. 3.7. Заметим, что уравнения фазового равновесия, полученные Флори для полимеров с полугибкими [10] и абсолютно жесткими цепями [4], несколько различаются между собою, если в уравнениях для полугибких полимеров принять / равным 0. Это различие связано с тем, что в уравнениях для жесткоцепных полимеров параметр разориентации у является переменной величиной, зависящей от концентрации полимера, в то время как в уравнениях для полужесткоцепных полимеров принимается полная ориентация анизотропной фазы при всех концентрациях. Тем не менее сопоставление диаграмм состояния для растворов полимеров с полугибкими цепями при /=0 (см. рис. 3.7) и предельно жесткими цепями (см. рис. 3.4) свидетельствует о хорошем совпадении общего характера сравниваемых кривых фазового равновесия. [c.55]

    Существует два практически возможных пути перехода от концентрированного раствора к чистому полимеру. Первый заключается в испарении летучего растворителя. При достижении определенной концентрацш система становится мало деформируемой и изготовляемое из раствора полимера изделие (пленка, нить) приобретает устойчивую форму. При дальнейшем испарении растворителя система достигает концентрации, выше которой совершается переход от высокоэластического состояния к застекловап-ному, и, наконец, при полном удалении растворителя остается чистый полимер. На всем пути от исходного раствора до чистого полимера система остается однофазной и изменяется только ее физическое состояние (переход от вязкотекучего через высокоэластическое к стеклообразному состоянию). В этой фазово-гомогенной системе могут возникать только два типа неоднородностей. Первый относится к флуктуациопным надмолекулярным образованиям в растворе, которые из-за относительно большой скорости испарения растворителя могут не успеть преобразоваться до достижения нового равновесия и фиксируются при стекловании преимущественно в том виде, который отвечает их состоянию в исходном растворе. [c.257]

    С учетом этих и ряда других особенностей полиме-зов к ним можно применять все закономерности, свойст-зенные фазовому равновесию в смесях низкомолеку-/гярных веществ. Так же, как и для последних, для систем с участием полимерных компонентов характерны зсе три основных вида диаграмм состояния аморфное равновесие, кристаллическое равновесие и смешанное аморфно-кристаллическое равновесие. Области однофазного молекулярного раствора сменяются при изменении температуры или при количественном соотношении ком-тонентов областями двухфазного состояния, в которых истема распадается на две аморфные фазы (два взаимных раствора компонентов) или на фазу насыщенного эаствора полимера в растворителе над фазой кристаллического полимера. [c.80]

    Кроме перечисленных основных требований к разделяющим агентам и экстрагентам, весьма существенна степень чистоты конечных продуктов, получаемых по проектируемой технологической схеме. Чистота является одним из основных требований, предъявляемых к мономерам и другим полупродуктам, причем важен не только количественный, но и качественный состав примесей. Ряд примесей, содержащихся в полупродуктах в ничтожных долях, могут, например, оказаться сильнейшими ядами для последующих каталитических процессов или резко ухудшать качество полимера, получаемого в процессе полимеризации. Может случиться, что введенный на определенной стадии технологического процесса разделяющий агент или экстрагент окажет, даже в виде незначительных примесей, нежелательное действие на последующих стадиях. Сказанное выше нельзя понимать таким образом, что применения экстрактивной и азеотропной ректификации и экстракции следует по возможности избегать. Эти методы в настоящее время интенсивно развиваются и весьма перспективны. Они имеют бо.льшое практическое значение и с успехом используются в промышленности, однако все же являются не единственно возможными методами разделения азеотропных смесей. Добавление в разделяемую смесь нового вещества в жидком или твердом состоянии является лишь средством, в результате которого достигаются желательные изменения диаграммы фазового равновесия. И если изменение равновесных соотношений является обязательным условием разделения азеотропных смесей, то средства осуществления такого изменения не исчерпываются только введением в исходный раствор новых веществ. [c.187]

    Теория Флори и Хаггинса базируется на решеточной модели, которая игнорирует различия в свободных объемах. Вообще, полимерные молекулы в чистом состоянии пакуются более плотно, чем молекулы нормальных жидкостей. Поэтому, когда молекулы полимера смешиваются с молекулами нормального размера, полимерные молекулы получают возможность осуществлять. вращательные и колебательные движения. В то же самое время меньшие по размеру молекулы растворителя частично, теряют такую возможность. Для учета этих эффектов Флори [27] и Паттерсоном, которые основывались на идеях, выдвинутых При-гожиным [72], разработана теория уравнения состояния полимерных растворов. Новая.теория более сложна, однако, в отличие от прежней, она может, хотя и не очень точно, описывать некоторые формы фазового равновесия компонентов, наблюдаемые в полимерных растворах. В частности, она способна объяснить то, что некоторые системы йолимер—растворитель могут проявлять нижние критические температуры, точно также как и верхние критические температуры (см, рис. 8.17). Инженерные приложения новой теории развивались только в последнее время. Исходные положения их даны Боннером [12], Бонди [10], а также Тапавища и Праусницем [85]. Приложение ее к фазовому равновесию в системе полиэтилен—этилен при высоких давлениях рассматривалось Боннером и др. [12], [c.339]

    Фазовая морфология студня в сильной мере зависит от условий его получения. Папков [409] указывает два возможных пути получения концентрированной системы через поле однофазного состояния или через поле двухфазного состояния на диаграмме фазового равновесия. В первом случае в системе сохраняются флуктуацион-ные образования, которые возникли еще в растворе. Во втором случае наряду с флуктуационными возникают образования за счет распада системы на две фазы. Кроме того, Папков указывает на возможность возникновения микрогетерогенных образований вследствие частичного механического разрушения студня. Таким образом, студни, образующиеся по второму способу, имеют более разнообразную фазовую морфологию. Особенно резко могут проявляться различия в фазовой морфологии при разных способах получения студня кристаллизующихся полимеров [410]. [c.213]

    Способность жесткоцепных полимеров образовывать нематические растворы в состоянии покоя хорошо описывается статистической теорией фазовых равновесий по Флори [6]. Как теория, так и ее экспериментальная проверка, были, в основном, обсуждены в работах 7—9]. Самые последние развития некоторых теоретических положений Флори обсуждены в гл. V и VI этой книги. Некоторые экспериментальные факты, касающиеся жесткоцепных полимеров, описаны сотрудниками фирмы Ви Роп1 (см. гл. VI). Теоретические рассмотрения и экспериментальные поиски, относящиеся к гибкоцепным полимерам, также имеются в литературе [10—14], а последние достижения в этой области отражены в некоторых главах данной книги. [c.153]

    Будем рассматривать величину зародыша как внутренний параметр 2- Тогда при движении системы из исходного положения А в состояние равновесия В , находящееся в старой фазе, в точке С, где = Ькр, произойдет фазовый переход, и система придет не в точку Бь а в новую фазу В2 (см. рис. IV.5,б). После того как величина г тюстигла своего критического значения и произошел фазовый переход, величина параметра 1 в этот момент может оказаться несущественной. Например, при рассмотрении процесса осаждения полимера роль параметра может играть энергия взаимодействия, и если достигло своего критического значения, то осаждение произойдет независимо от того, какие размеры имели клубки в момент перехода (в данном случае параметр — размер клубка). Значение параметра 1 замораживается — полимер в осажденном состоянии помнит структуру раствора в момент осаждения. [c.238]

    При получении химических. волокон явления фазовых равновесий следует рассматривать с двух позиций. При получении раствора необходимо выбрать такую систему, чтобы в технологически приемлемых условиях образовывался гомогенный однофазный растрор. При формовании волокон путем удаления части растворителя или введения осадителя система должна находиться в таком состоянии, чтобы полимер имел наименьшую совместимость с растворителем. [c.44]


Смотреть страницы где упоминается термин равновесие в растворах полимеров фазовые состояния: [c.40]    [c.55]    [c.15]    [c.128]    [c.257]    [c.181]   
Физикохимия полимеров (1968) -- [ c.25 ]




ПОИСК





Смотрите так же термины и статьи:

Полимер три состояния

Полимеры равновесию

Равновесие в растворах

Равновесие фазовое

Растворы полимеров

Фазовые состояния

равновесие в растворах полимеров



© 2025 chem21.info Реклама на сайте