Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Железо арсенид

    При переработке свинцового блеска или его концентратов, содер-м ащих сульфиды меди и железа, арсениды и т. д., между слоем [c.429]

    Водородный электрод нельзя применять в присутствии легко окисляющихся или восстанавливающихся веществ, например, солей азотной, хромовой, марганцовой кислот, закиси железа и органических соединений, а также веществ, отравляющих поверхность платины (т. е. вытесняющих из иее водород). К ним принадлежат свободные галогены, арсениды, сульфиды и др. При соединении водородного электрода с другими электродами следует применять электролитический мостик. [c.158]


    Стибин SbH., также дает темное пятно с нитратом серебра, но оно исчезает при смачивании 80%-ным этанолом. Пятно от мышьяка остается и не изменяется. Обнаружению арсина мешают соли железа, кобальта, никеля, меди, серебра, ртути, образующие арсениды соответствующих металлов. Мышьяковистый водород взрывает в смеси с воздухом, как и водород. [c.203]

    Чистый мышьяковистый водород может быть получен действием воды на арсениды щелочных и щелочноземельных металлов. При действии водорода (в момент его выделения) на кислые водные растворы соединений мышьяка или при растворении в разбавленных кислотах сплавов мышьяка с цинком, железом или другими активными металлами получается мышьяковистый водород, загрязненный водородом. [c.16]

    Радиоактивационным методом определяют магний в чугуне [652], алюминии [1097], цирконии, железе, меди [704], в горных породах [1282], в арсениде галлия [754], в биологических материалах [1024, 1152—1154], в воде [1160]. [c.166]

    Водородный электрод нельзя применять в присутствии легко окисляющихся или восстанавливающихся веществ, например солей азотной, хромовой, марганцовой кислот, закиси железа и др., а также веществ, отравляющих поверхность платины (т. е. вытесняющих из нее водород). К ним принадлежат свободные галоиды, арсениды, сульфиды и др. [c.200]

    Типы минералов, содержащих железо, настолько разнообразны, что из многочисленных возможных методов их разложения каждый находит применение. Некоторые минералы растворимы в воде. Многие окисленные минералы, нерастворимые в воде, разлагаются соляной кислотой, азотной кислотой или царской водкой, часто лишь после очень топкого измельчения и продолжительного действия кислоты. Для разложения многих кислотоупорных минералов требуется сплавление с различными плавнями, указанными на стр. 919. В качестве плавней могут применяться как щелочно-окислительные смеси, так и пиросульфаты и даже кислые фториды. Выбор плавня зависит от природы анализируемого материала и намеченной цели. При анализе сульфидов и арсенидов щелочное сплавление часто предпочитают кислотной обработке, потому что при выщелачивании плава водой достигается количественное отделение серы, мышьяка, фосфора, ванадия и молибдена от многих основных металлов. Вот почему при определении серы в пиритсодержащих рудах кислотной обработке предпочитают метод щелочного сплавления. [c.435]

    Аморфная смоляная руда, или урановая смолка , отличается от уранинита тем, что не имеет явных признаков кристаллического строения, и тем, что содержит лишь около 1 % редких земель и практически не содержит тория. Состав смоляной руды приближается к формуле изОв, но непостоянен. В смоляной руде также могут находиться продукты радиоактивного распада урана, в частности свинец. Содержание урана в смоляной руде составляет от 40 до 76%, тогда как в уранините оно не превышает 50%- Смоляная руда встречается в крупных скоплениях в гидротермальных отложениях, в ассоциации с сульфидными минералами и арсенидами железа, меди, свинца, кобальта, никеля. [c.375]


    ЖЕЛЕЗА АРСЕНИД FeAs, светло-серые крист, с металлич. блеском ( л 1030 °С в воде и орг. р-рителях не раств., к-тами разлагается. Получ. сплавлением элементов. Компонент эвтектич. композиций с GaAs и InAs для ИК фильтров и магниторезистивных датчиков. [c.200]

    АРСЕНИДЫ, соединения металлов с мышьяком. Кристаллич. высокоплавкие в-ва большой плотности. А. щел. металлов гидролизуются водой, А. щел.-зем. металлов водой разлаг. медленно, разбавл. к-тами — легко А. тяжелых металлов разлаг. только к-тами. С увеличением содержания Аз хим. стойкость возрастает. При действии окислителей А. превращ. в арсениты. Большинство А. обладает полупроводниковыми св-вами. Получ. сплавлением элементов в вакуу- 1е или инертной атмосфере. Полупроводниковые материалы в солиечяых батареях, ИК-детекторах, датчиках Холла, туннельных диодах, транзисторах, светодиодах, лазерах. ПДК в пересчете на Аз 0,5 мг/м . См., напр., Кадмия сескви-арсенид, Галлия арсенид, Железа арсенид, Кобальта арсенид. [c.56]

    Нитриды железа, кобальта и никеля в отличие от нитридов предшествующих d-элементов фазами внедрения не являются. Об этом свидетельствуют их низкая термическая устойчивость и способность к последовательной диссоциации при иагревании с отщеплением азота и образованием все более бедных азотом соединений. Склонностью к термической диссоциации с последовательным отщеплением летучего компонента обладают также фосфиды и арсениды, причем первые — в большей степени. Для стибидов это свойственно в меньшей степени в силу небольшой летучести сурьмы. Фосфиды, арсениды и стибиды получают прямым синтезом из компонентов в эвакуированных и запаянных ампулах. Состав продукта зависит от исходного соотношения компонентов, температуры и давления пара летучего компонента в ампуле. Эти соединения разнообразны по составу, однако наиболее типичные фазы Э3П, Э2П, ЭП и ЭП. . Для кобальта и никеля известны фосфиды ЭР3. Высшие фосфиды ЭРз и ЭРз, а также арсенид FeAsj — полупроводники, остальные пниктогениды обладают полуметаллическими и металлическими свойствами. [c.407]

    В отличие от железа кобальт и никель чаще образуют сульфидные и арсенид-ные минералы, чем оксидные. Известны oAsS — кобальтин, NiAs — никелин, СоАзз — скуттерудит, NiAsS — герсдорфит и т.п. Совместные с железом минералы также принадлежат к сульфидно-арсенидному классу (Pe,Ni)9Sg — пентландит, ( o,Pe)As2 — саффлорит и т.п. [c.489]

    Методы инверсионной вольтамперометрии находят широкое применение для определения Sb в различных материалах, в том числе в чугунах, железе и сталях [1348, 1575], меди и медных сплавах [87, 116, 526, 569, 1348, 1575,1585], олове[221, 222, 224, 225, 242, 318, 526], алюминии [131, 132, 731, 1503], галлии и его солях [243, 245, 293, 303], арсениде галлия [243, 245, 246, 303, 586], кадмии и его солях [302, 318, 737], германии, тетрахлориде и тетрабромиде германия [105, 134], кремнии, двуокиси кремния, тетрахлориде и тетрабромиде кремния и трихлорсиланах [105, 133, 271, 310, 1503], цинке и цинковых сплавах [67, 737], серебре [605, 731J, свинце [833], теллуре [116], мышьяке [303], хроме и его солях [940], барии [125], ртути [528], висмуте [1348], никеле и никелевых сплавах [590], припоях [1348], полиметаллических рудах и продуктах цветной металлургии [116], растворах гидрометаллургического производства [138, 319, 1545], шламах [1175], ниобии и тантале и их соединениях [223, 2901, химических реактивах и препаратах [105], криолите [245, 586], материалах, используемых в злектронной [c.68]

    Активационные методы с выделениед и радиохимической очисткой образовавшихся изотопов ЗЬ используются для ее определения в алюминии [639—641, 912, 1235, 1247, 1376, 848] и трехокиси алюминия [639], боре и нитриде бора [426], бериллии [523], ванадии и пятиокиси ванадия [145], висмуте [1204, 1659, 1660], вольфраме [144], галлии [1375] и арсениде галлия [640, 824, 825, 831, 1375], германии [610, 639, 640], горных породах [74, 449, 1276, 1554], железе, стали и чугуне [987, 1033, 1113, ИЗО, 1280, 1590, 1653], железных метеоритах [1539], золоте [1676], индии [828, 829] и арсениде индия [115], каменных метеоритах [1136, 1234, 1236, 1515], кремнии [38, 39,275,282,455,639, 640, 861, 1035, 1144, 1355, 1473, 1492, 1540, 1687], двуокиси кремния и кварце [282—285, 487, 639, 640], карбиде кремния [38, 276, 639, 6401, [c.75]

    В высокоосновных породах (норите) пирротин, халькопирит, кубанит, другие железо- и никельсодержащие минералы (сульфиды и арсениды) [c.155]

    ДЛЯ определения содержания хрома нашел метод активации тепловыми нейтронами. В табл. 13 приведены ядерно-физические свойства изотопов хрома и сечения реакций на нейтронах [42]. При нейтронно-активационном анализе с использованием ядер-ных реакторов хром определяют по реакции (п, y) r. Конкурирующей реакцией является Ре (п, а) Сг, однако вследствие значительно более низкого сечения данной реакции (б 100 мбарн) и низкой распространенности изотопа Ре (5,84%) ее вклад несуществен. Так, при анализе горных пород он составляет 0,1—0,2% от содержания в них хрома [642]. Анализ железных метеоритов (—92% Ре) показывает, что при двухнедельном облучении потоком 1,4 10 нейтр1 см -сек) вклад указанной реакции составляет всего лишь 1-10 г/г [1051]. При анализе свинца высокой чистоты найдено, что 3,5-10 г железа будут давать такую же активность, как и 3 10 г Сг (предел обнаружения) [63], Радиохимические методы. При радиохимическом анализе облученных мишеней используют различные наиболее селективные способы разделения и очистки фракций определяемых элементов [239]. Широкое внедрение гамма-спектрометрической техники (см., например, [224, 235, 904]) позволяет существенно сократить, число операций очистки выделяемых фракций. Во многих случаях производят только групповое разделение или отделение элемента основы [95, 175, 618, 1066]. Этому способствует и то обстоятельство, что активность Сг, имеющего большое время жизни (см. табл. 13), обычно измеряют через 2 и более дней после конца облучения, когда все короткоживущие радиоизотопы уже распались. В табл. 14 приведены некоторые примеры радиохимических вариантов нейтронно-активационного определения хрома в различных объектах. Очень часто используют экстракционные методы. Для примера приведем методику нейтронно-активационного определения микропримесей Сг, Мп, Со, N1, Си и 2п в арсениде галлия высокой чистоты [531]. [c.100]


    Броматометрическое титрование рекомендовано для определения мышьяка в рудах, концентратах и минералах [356, 1047], в сплавах с висмутом и селеном 1342], в селеномышьякопых продуктах [266], в сталях, сплавах и рудах, содержащих сурьму [987], черновом свинце [182], полупроводниковых соединениях бора с мышьяком [340], арсениде галлия [1083], инсектицидах [1080], металлах, растворимых в кислотах [988], растворах солей железа [96], продуктах, содержащих платиновые металлы [219]. [c.43]

    Метод отгонки мышьяка в виде трихлорида прост, надежен и позволяет выделять как макро-, так и микроколичества мышьяка из самых разнообразных материалов, в том числе из железа, чугуна и стали Г374, 552, 694, 986], сплавов на основе железа [380, 986], железных руд [373, 986], свинцово-цинковых концентратов [14, 375, 376], шлаков [986], горных пород и минералов [74, 781], платиновых металлов и продуктов их переработки [219], вольфрама и вольфрамового ангидрида [921], латуней [377], бронз [381], сурьмы J837], арсенида галлия [243] и арсенида индия [464]. [c.143]

    В присутствии большого количества железа мышьяк в канале электрода образует малолетучее соединение, испарение которого-растягивается на 3 жми [10]. Известны также другие арсениды металлов типа АзМез или АззМе, которые, как правило, имеют высокие плотность и температуру плавления. [c.245]

    Имеются сведения, что кислородсодержащие сое-динения получаются -при пропускании смеси метана с водяным паром вместе с углекислотой, в-одо-родом или кислородом над металлическими катализато-рам-и при 200—500° при давлениях 500 аг и -выше з . Получаемые таким образом -продукты окисления, которые м-ожно варьировать соответственно п-рим-еняемой газовой смеси, предста-вляют собой спирты, альдегиды, кетоны и кислоты. Среди катализаторов, которые могут быть использованы, находятся цинк, магний, кальций, алюминий, хром, марганец, ванадий, молибден, титан, железо, кобальт, никель и элементы редких земель или соединения этих металлов, -например их сульфиды, арсениды, фосфаты, силикаты или бораты. Катализатор может также содержать различные хроматы, вольфраматы- или молибдаты. Аппаратура может быть ме-дная или п-окрыта медью или -построена -из стали, содер-жащей ванадий, марга1не-ц, никель или кобальт. [c.903]

    Анионные формы примесей отделяют от катионов основы сорбцией на анионитах. Анионообменное поглощение происходит из высококонцентрированных растворов электролитов и часто весьма избирательно и поэтому ограниченно применяется для получения групповых концентратов. Подробно изученная анионообменная сорбция элементов из растворов соляной кислоты и хлоридов [403] использована для разработки схемы химико-спектрального анализа следов в силикатных породах [946, 1221]. Опн-Сано [180] выделение металлов группы платины в виде хлорком-плексов из растворов солей никеля. Спектрохимический метод определения примесей В1, Сё, РЬ и Зп в чистом хроме предусматривает предварительную сорбцию элементов из 2 н. раствора НС1 [512]. Элементы, образующие прочные анионные фторидные комплексы (В, Ое, 5Ь, 81, 5п), выделяют на колонке С анионитом при анализе мышьяка, галлия и арсенида галлия [602]. Аналогично отделяют следы Мо, МЬ, Та, Т1, Зп, Ш, 2г от больших количеств железа [1029]. Примерами сочетания избирательного концентрирования анионообменом с конечным спектральным анализом служат определение микропримеси Ре в люминофорных материалах [468], определение В в растворах фторидов и фтористоводородной кислоте [741] и Ри и ТЬ (сорбция из 8 н. раствора НЫОз) в амери ции [964]. [c.302]

    Образующийся арсенид железа РеАз прокаливают.  [c.701]

    Содержание висмута в земной коре 2-10- % (по массе). Висмут встречается в природе в самородном виде, в соединении с серой, селеном, теллуром и некоторыми другими элементами. Обладая высокой степенью изоморфизма с мышьяком и сурьмой, висмут часто входит в состав арсенидов и антимоиндов никеля, кобальта, железа. Кроме того, для этого элемента характерно образование сульфовисмутитов свиица, серебра и меди. [c.292]


Смотреть страницы где упоминается термин Железо арсенид: [c.29]    [c.305]    [c.542]    [c.378]    [c.56]    [c.400]    [c.163]    [c.265]    [c.114]    [c.145]    [c.8]    [c.596]    [c.643]    [c.22]    [c.711]    [c.440]    [c.56]    [c.259]    [c.456]    [c.274]    [c.472]    [c.274]    [c.274]   
Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.200 ]




ПОИСК





Смотрите так же термины и статьи:

Арсениды

Железа арсениде галлия



© 2025 chem21.info Реклама на сайте