Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Железа арсениде галлия

    Радиоактивационным методом определяют магний в чугуне [652], алюминии [1097], цирконии, железе, меди [704], в горных породах [1282], в арсениде галлия [754], в биологических материалах [1024, 1152—1154], в воде [1160]. [c.166]

    Анионные формы примесей отделяют от катионов основы сорбцией на анионитах. Анионообменное поглощение происходит из высококонцентрированных растворов электролитов и часто весьма избирательно и поэтому ограниченно применяется для получения групповых концентратов. Подробно изученная анионообменная сорбция элементов из растворов соляной кислоты и хлоридов [403] использована для разработки схемы химико-спектрального анализа следов в силикатных породах [946, 1221]. Описано [180] выделение металлов группы платины в виде хлорком-плексов из растворов солей никеля. Спектрохимический метод определения примесей В1, Сс1, РЬ и Зп в чистом хроме предусматривает предварительную сорбцию элементов из 2 н. раствора НС [512]. Элементы, образующие прочные анионные фторидные комплексы (В, Ое, ЗЬ, 51, Зп), выделяют на колонке с анионитом при анализе мышьяка, галлия и арсенида галлия [602]. Аналогично отделяют следы Мо, НЬ, Та, Т1, 5п, , от больших количеств железа [1029]. Примерами сочетания избирательного концентрирования анионообменом с конечным спектральным анализом служат определение микропримеси Ре в люминофорных материалах [468], определение В в растворах фторидов и фтористоводородной кислоте [741] и Ра и ТЬ (сорбция из 8 н. раствора ННОз) в америции [964]. [c.302]


    ЭПР железа в арсениде галлия. [c.180]

    Недавно авторы [1] изучали спектры э. п. р. ионов трехвалентного железа в арсениде галлия и определили = 2,045 0,002. Положительный сдвиг --фактора наблюдался также при изучении Ре + в арсениде индия [2] и фосфиде галлия [31, в целом ряде соединений [4]. Во всех случаях угловая [c.42]

    Примеси элементов VI группы (S, Se, Те) сообщают соединениям А В я-проводимость, а элементы II группы (b g, Zn, d) — р-проводимость. Интересна изменчивость арсенида галлия под влиянием количества примеси магния. Если концентрация атомов магния менее 5-10 в 1 ел , арсенид галлия имеет электронную проводимость, при более высокой концентрации магния — дырочную. Медь, кобальт, никель, железо для данной группы веществ являются, как правило, сильными полупроводниковыми ядами. [c.188]

    Для выбора оптимальных условий определения была исследована степень влияния элемента основы и сопутствующих примесных элементов, подобраны экстрагенты, дающие возможность не только сконцентрировать определенную примесь в меньшем объеме раствора, но и повысить молярный коэффициент погашения вследствие образования в органической фазе соединений с новыми свойствами. Кроме того, усовершенствованы способы измерения оптической плотности растворов в результате использования специальных кювет малого объема с большой длиной оптического пути. Все это позволило не только поднять точность определения, но в ряде случаев также повысить и чувствительность определения до 10 %, которая для химических методов определения примесей в металлах и их соединениях является очень высокой. Такие методы анализа предложены, например, для определения примесей ртути и никеля в индии, железа в таллии, фосфора в галлии, мышьяке и их соединениях, включая арсенид галлия. [c.12]

    Методы инверсионной вольтамперометрии находят широкое применение для определения Sb в различных материалах, в том числе в чугунах, железе и сталях [1348, 1575], меди и медных сплавах [87, 116, 526, 569, 1348, 1575,1585], олове[221, 222, 224, 225, 242, 318, 526], алюминии [131, 132, 731, 1503], галлии и его солях [243, 245, 293, 303], арсениде галлия [243, 245, 246, 303, 586], кадмии и его солях [302, 318, 737], германии, тетрахлориде и тетрабромиде германия [105, 134], кремнии, двуокиси кремния, тетрахлориде и тетрабромиде кремния и трихлорсиланах [105, 133, 271, 310, 1503], цинке и цинковых сплавах [67, 737], серебре [605, 731J, свинце [833], теллуре [116], мышьяке [303], хроме и его солях [940], барии [125], ртути [528], висмуте [1348], никеле и никелевых сплавах [590], припоях [1348], полиметаллических рудах и продуктах цветной металлургии [116], растворах гидрометаллургического производства [138, 319, 1545], шламах [1175], ниобии и тантале и их соединениях [223, 2901, химических реактивах и препаратах [105], криолите [245, 586], материалах, используемых в злектронной [c.68]


    Активационные методы с выделениед и радиохимической очисткой образовавшихся изотопов ЗЬ используются для ее определения в алюминии [639—641, 912, 1235, 1247, 1376, 848] и трехокиси алюминия [639], боре и нитриде бора [426], бериллии [523], ванадии и пятиокиси ванадия [145], висмуте [1204, 1659, 1660], вольфраме [144], галлии [1375] и арсениде галлия [640, 824, 825, 831, 1375], германии [610, 639, 640], горных породах [74, 449, 1276, 1554], железе, стали и чугуне [987, 1033, 1113, ИЗО, 1280, 1590, 1653], железных метеоритах [1539], золоте [1676], индии [828, 829] и арсениде индия [115], каменных метеоритах [1136, 1234, 1236, 1515], кремнии [38, 39,275,282,455,639, 640, 861, 1035, 1144, 1355, 1473, 1492, 1540, 1687], двуокиси кремния и кварце [282—285, 487, 639, 640], карбиде кремния [38, 276, 639, 6401, [c.75]

    ДЛЯ определения содержания хрома нашел метод активации тепловыми нейтронами. В табл. 13 приведены ядерно-физические свойства изотопов хрома и сечения реакций на нейтронах [42]. При нейтронно-активационном анализе с использованием ядер-ных реакторов хром определяют по реакции (п, y) r. Конкурирующей реакцией является Ре (п, а) Сг, однако вследствие значительно более низкого сечения данной реакции (б 100 мбарн) и низкой распространенности изотопа Ре (5,84%) ее вклад несуществен. Так, при анализе горных пород он составляет 0,1—0,2% от содержания в них хрома [642]. Анализ железных метеоритов (—92% Ре) показывает, что при двухнедельном облучении потоком 1,4 10 нейтр1 см -сек) вклад указанной реакции составляет всего лишь 1-10 г/г [1051]. При анализе свинца высокой чистоты найдено, что 3,5-10 г железа будут давать такую же активность, как и 3 10 г Сг (предел обнаружения) [63], Радиохимические методы. При радиохимическом анализе облученных мишеней используют различные наиболее селективные способы разделения и очистки фракций определяемых элементов [239]. Широкое внедрение гамма-спектрометрической техники (см., например, [224, 235, 904]) позволяет существенно сократить, число операций очистки выделяемых фракций. Во многих случаях производят только групповое разделение или отделение элемента основы [95, 175, 618, 1066]. Этому способствует и то обстоятельство, что активность Сг, имеющего большое время жизни (см. табл. 13), обычно измеряют через 2 и более дней после конца облучения, когда все короткоживущие радиоизотопы уже распались. В табл. 14 приведены некоторые примеры радиохимических вариантов нейтронно-активационного определения хрома в различных объектах. Очень часто используют экстракционные методы. Для примера приведем методику нейтронно-активационного определения микропримесей Сг, Мп, Со, N1, Си и 2п в арсениде галлия высокой чистоты [531]. [c.100]

    Броматометрическое титрование рекомендовано для определения мышьяка в рудах, концентратах и минералах [356, 1047], в сплавах с висмутом и селеном 1342], в селеномышьякопых продуктах [266], в сталях, сплавах и рудах, содержащих сурьму [987], черновом свинце [182], полупроводниковых соединениях бора с мышьяком [340], арсениде галлия [1083], инсектицидах [1080], металлах, растворимых в кислотах [988], растворах солей железа [96], продуктах, содержащих платиновые металлы [219]. [c.43]

    Метод отгонки мышьяка в виде трихлорида прост, надежен и позволяет выделять как макро-, так и микроколичества мышьяка из самых разнообразных материалов, в том числе из железа, чугуна и стали Г374, 552, 694, 986], сплавов на основе железа [380, 986], железных руд [373, 986], свинцово-цинковых концентратов [14, 375, 376], шлаков [986], горных пород и минералов [74, 781], платиновых металлов и продуктов их переработки [219], вольфрама и вольфрамового ангидрида [921], латуней [377], бронз [381], сурьмы J837], арсенида галлия [243] и арсенида индия [464]. [c.143]

    АРСЕНИДЫ, соединения металлов с мышьяком. Кристаллич. высокоплавкие в-ва большой плотности. А. щел. металлов гидролизуются водой, А. щел.-зем. металлов водой разлаг. медленно, разбавл. к-тами — легко А. тяжелых металлов разлаг. только к-тами. С увеличением содержания Аз хим. стойкость возрастает. При действии окислителей А. превращ. в арсениты. Большинство А. обладает полупроводниковыми св-вами. Получ. сплавлением элементов в вакуу- 1е или инертной атмосфере. Полупроводниковые материалы в солиечяых батареях, ИК-детекторах, датчиках Холла, туннельных диодах, транзисторах, светодиодах, лазерах. ПДК в пересчете на Аз 0,5 мг/м . См., напр., Кадмия сескви-арсенид, Галлия арсенид, Железа арсенид, Кобальта арсенид. [c.56]

    Определенный интерес представляет, например, ДХДЭЭ (хлорекс), недавно использованный для концентрирования. Этот растворитель применяли для сброса сурьмы из концентрированной НС1 при химико-спектральном [505, 657, 1808] и активационном [1485] определении в ней микроэлементов. Железо(1И) удаляли из концентрированных растворов НС1 при анализе железа высокой чистоты химико-спектральным [1809] и активационным [757] методами, при выделении Со из облученной дейтронами железной мишени [1810]. Индий экстрагировали из 7—8 М НБг при химико-спектральном анализе этого металла на примеси Ag, С(1, Ве, Мп, Со, Сн и других элементов [911], при анализе арсенида индия после отгонки мышьяка в виде ЛзВгд [912]. Удаление галлия из хлоридных растворов иснользовали при радиоактивационном анализе арсенида галлия [880, 1811], при химико-спектраль ном [655] и активационном [656] анализе металлического галлия. В другой работе, анализируя антимонид галлия, авторы экстрагировали галлий из бромидного раствора [689]. Дихлордиэтиловый эфир использовали и при определении примесей в таллии. В случае химико-спектрального анализа таллия высокой чистоты [1812] макроэлемент извлекали из бромидного раствора в водной фазе определяли Ag, А1, Ва, В1, Со, С<1, Сг, Сн, Ре, Оа, 1п, Mg и другие элементы с чувствительностью 1-10 — 2-10 %. Удаляли таллий хлорексом и при активационном определении примесей [1813]. [c.309]


    Зависимости коэффициентов распределения примесныг элементов в арсениде галлия от их порядкового номера характеризуются наличием двух и более максимумов. Так, коэффициенты распределения элементов третьего периода имеют два максимума, приходящихся на магний и фосфор. Для примесей больших периодов возможны три максимума они приходятся на железо, цинк, селен, серебро, индий и теллур. [c.25]

    Примесями, которые ограничивают электрофизические свойства пленок ОаАз, являются в основном кремний и кислород [6]. Кроме того, в качестве некоторых примесей могут выступать медь, железо, хром, олово, селен, сера, углерод. Основными источниками загрязнения являются примеси исходных продуктов (соединения мышьяка и галлия), натечка воздуха в газовую систему при эпитаксии и кварцевые тигли. Кварц растворяется галлием и является поставщиком кремния, который может давать донорные и акцепторные уровни. Контролируемое введение кислорода в систему позволяет уменьшать содержание кремния в арсениде галлия и тем самым улучшать его электрофизические свойства (рисунок) [7]. Ниже приводится влияние кислорода на содержание кремния  [c.156]

    При анализе высокочистого арсенида галлия Катаев и Отмахова экстрагировали галлий из 6—7 /И соляной кислоты изобутилацетатом, мышьяк удаляли на ионообменной колонке, наполненной катионитом КУ-2. После выпаривания водной фазы досуха заканчивали определение спектральным методом. Сочетание экстракции с концентрированием па ионообменных смолах применяли также при спектральном анализе тетрафторида тория и арсенида галлия , при радиоактивационном определении примесей в галлии , сурьме и железе .  [c.22]

    Новый метод описан Кониси и Какамура (1971). Поскольку сверхчистый арсенид галлия содержит только 0,3 млн кислорода, 0,1 МЛН азота и 0,5 млн углерода, его пытались использовать в качестве обыскриваемого электрода для определения газов в железе, никеле и меди. Установлено, что при межэлектродном зазоре 40—50 мкм вклад обыскриваемых электродов остается постоянным. При использовании подобных электродов из арсенида галлия давление в источнике при определении кислорода и азота должно составлять 5-10 и 2-10 мм рт. ст. соответственно такое остаточное давление можно легко получить даже без криосорбционной откачки и отжига. Результаты анализов обсуждены в разд. 12.4.В. [c.386]

    Кониси и Накамура (1970) использовали образцы нержавеющей стали NBS-1091 и NBS-1092 для сравнения значений, полученных с использованием метода образец—образец и образец—GaAs-электрод. Для образца NBS-1091 первый метод дал 1500 вес МЛН кислорода, а второй 150 вес. млн . Согласно сертификату, образец содержит 131 вес. млн кислорода. Соответствующие значения для образца NBS-1092 870, 68 и 28 вес. МЛН . Аналогичные данные приведены для ряда других основ, включая зонно-очищенное железо, различные виды стали, никель, медно-никелевые сплавы, бескислородную медь и сверхчистое золото. В большинстве случаев содержание кислорода и углерода в электродной паре образец—арсенид галлия ниже, чем в паре образец—образец. Для азота использование в качестве электрода арсенида галлия не улучшает результаты. Коэффициенты относительной чувствительности для всех трех элементов были выбраны меньше 3. Интересно отметить, что в случае золота высокой чистоты использование электрода из арсенида галлия не приводит к улучшению чувствительности определения по кислороду и азоту. Вероятно, золото не адсорбирует газы, поэтому применение арсенида галлия неэффективно. [c.389]

    ХААК [130], 2-ХАР [27], 8-ХАДЭАФ [130], 8-ХААК [130]. Галлий определяют с использованием ПАДМФ-5,6 [390], ПАР [57, 104, 219, 277, 314, 486, 497, 552, 662, 868, 884] и ПАН-2 [420, 590] в воде [314], тонких пленках из германия [590], материалах на алюминиевой основе [420], в присутствии вольфрама [884], в смеси фосфида индия и арсенида галлия [104], в железе и стали [662]. Показано [277], что комплекс галлия с ПАР состава ОаРг разрушается многими маскирующими веществами, которые можно расположить в ряд ЭДТА > НТА оксалат цитрат > ИДА малонат, глици- [c.114]

    Как показывают результаты измерения э.п.р. Fe + в высокоомном и низкоомном арсениде галлия [16], параметр расщепления в кубическом поле а существенно зависит от сопротивления материала или степени его компенсации. В некоторых образцах при 77 °К получено а = 400- 10" см что дает экстраполированное на 1,3 °К значение а 440 10 см . Зависимость а от сопротивления, по-видимому, является особенностью арсенида галлия, связанной с присутствием двух акцепторных уровней в легированном железом GaAs [10] и шириной запрещенной зоны, достаточной для размещения антнсвязующего и несвязующего уровней (Dqдополнительных исследований по влиянию компенсации на э.п.р.-параметры ионов в S-состоянии. [c.56]

    Данные по кинетике растворения GaAs, лимитирование процесса скоростью химической реакции на его поверхности позволили поставить вопрос об атомно-молекулярном механизме процесса растворения арсенида галлия в кислых растворах хлорного железа. [c.215]

    Отсутствие влияния типа и величины проводимости GaAs на скорость растворения позволяет принять, что в процессе растворения восстановление ионов трехвалентного железа происходит в основном за счет валентных электронов арсенида галлия. При увеличении порядкового номера элемен-тов — компонентов соединений уменьшаются значения электронной плотности в электронных мостиках между ближай- [c.215]

    В связи с интенсивным исследованием и все большим практическим ррименением. полупроводниковых соединений чрезвычайно актуальна задача точного контроля за нарушением стехиометрического состава сложных полупроводников. Правда, разные группы полупроводниковых соединений характеризуются различными пределами от клонений от стехиометрического состава. Так, окись железа РеО (И) уже при комнатных условиях имеет недостаток атомов железа против стехиометрии 5%, а арсениду галлия СаАз по сравнению с формульным составом недостает атомов галлия всего 0,009%. Точное определение концентрации сверхстехиометрических атомов в полупроводниковом веществе с ничтожно малым отклонением от стехиометрии является одной из самых трудных проблем аналитической химии полупроводников. Между тем электрофизические,оптические и другие свойства полупроводниковых соединений в первую очередь зависят от степени нарушения стехиометрического состава. [c.8]

    При эмиссионно-спектроскопическом определении примесей в железе высокой чистоты основу предварительно отделяют экстракцией диэтиловым эфиром из 6 Ж НС1 [98]. Нижние пределы определения Мп, Си, N1, Сг, V, Со, А1, РЬ, Т1 и гг порядка 10 —10 %. До 4 10 % В1 и 9 10 % РЬ определяли полярографически в чистом железе, чугуне и сталях после отделения железа экстракцией изобутилацетатом из солянокислого раствора [99]. Экстракцию галлия диизопропиловым эфиром из 6—8 М НС1 применяли для предварительного концентрирования нримесей при их спектральном определении [100, 101]. Чувствительность определения Мп, Сг, В1, N1, Мо, Ве, Т1, 2г, С(1, V, Ъп, Со, М , Са, Си, РЬ и А1 порядка 10 —5,10 %. Менее 10 % 81, М , Мп, Сг, N1, В1, А1, V, Ъг, Со, С(1 и Ве в арсениде галлия определяли эмиссионной спектроскопией после отгонки мышьяка и экстракции галлия диизопропиловым эфиром из 8 М НС1 [45]. Экстракцию основы раствором трибутилфосфата в хлороформе из солянокислой среды использовали для спектрофотометрического определения 10 % Мп в уране [102]. [c.99]


Смотреть страницы где упоминается термин Железа арсениде галлия: [c.378]    [c.114]    [c.8]    [c.126]    [c.185]    [c.247]    [c.92]    [c.53]    [c.177]    [c.49]    [c.212]    [c.157]    [c.143]   
Аналитическая химия мышьяка (1976) -- [ c.195 ]




ПОИСК





Смотрите так же термины и статьи:

Арсениды

Галлай

Галлий

Галлы

Железо арсенид



© 2025 chem21.info Реклама на сайте