Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гельмгольца, конденсатора

    По Гельмгольцу (1879 г.), двойной электрический слой можно уподобить плоскому конденсатору, одна из обкладок которого совпадает с плоскостью, проходящей через поверхностные заряды [c.157]

    Толщина плотного слоя Гельмгольца принимается равной диаметру противоиона. Эту часть ДЭС можно рассматривать как плоский конденсатор, потенциал которого с увеличением расстояния от поверхности снижается линейно. По теории Гуи — Чепмена противоионы диффузной части ДЭС распределяются в поле поверхностного потенциала в соответствии с законом Больцмана. Теория показывает, что потенциал в диффузной части слоя снижается с расстоянием по экспоненте. При малом значении потенциала эта зависимость выражается уравнением [c.78]


    Было предложено несколько теорий образования ДЭС, из которых наиболее известными являются модели Гельмгольца (так называемая модель плоского конденсатора) и модель Гуи-Чепмена. Современные представления о структуре ДЭС базируются на теории Штерна, согласно которой противоионы находятся в двух положениях одна их часть образует адсорбционный слой (так назы- [c.71]

    Согласно Штерну, первый слой или даже несколько первых слоев противоионов притягиваются к стенке под влиянием как электростатических, так и адсорбционных сил. В результате этого часть противоионов удерживается поверхностью на очень близком расстоянии, порядка 1—2 молекул, образуя плоский конденсатор толщиной б, предусмотренный теорией Гельмгольца — Перрена. Этот слой, в котором, естественно, наблюдается резкое падение электрического потенциала, одни авторы называют гельмгольцевским, другие — штерновским, третьи — адсорбционным слоем. Остальные противоионы, нужные для компенсации потенциалопределяющих ионов, в результате теплового разбрасывания образуют диффузную часть двойного слоя, в которой они распределены согласно тем же законам, что и в диффузном слое Гуи — Чэпмена. Эту часть двойного слоя, в которой потенциал падает относительно постепенно, иногда называют сло мХм.и. Схема двойного электрического слоя по Штерну и падение в нем электрического потенциала показаны на рис. vn, 11. [c.185]

    Из схемы можно видеть, что полное падение потенциала фо слагается из падения потенциала ср а диффузной части двойного слоя и разности потенциалов (фо — фе) между обкладками конденсатора. Место границы скольжения в таком слое остается до сих пор неясным. Некоторые авторы принимают, что она совпадает с границей между слоем Гельмгольца и слоем Гуи. Однако в общем случае ее можно представить себе находящейся в слое Гуи, как это изображено,на рис. VH, И (граница скольжения обозначена пунктирной линией АВ). Таким образом, потенциал на границе слоя Гельмгольца и слоя Гуи не обязательно должен быть равен -потенциалу. [c.185]

    Теории двойного электрического слоя. Впервые представление о двойном слое было введено в науку Кольраушем (1872). Простейшая количественная теория двойного электрического слоя, которую называют теорией плоского конденсатора конденсированного двойного слоя, была развита Г. Гельмгольцем (1879) и Р. А. Колли. В этой теории двойной электрический слой представляет собой конденсатор из двух обкладок, удаленных друг от друга на расстояние I. Одна обкладка совпадает с [c.417]


    Характер изменения потенциала в двойном электрическом слое позволяет выделить в нем плотную и диффузную части. Плотная часть двойного электрического слоя (так называемый слой Гельмгольца) образована ионами, находящимися на минимальном расстоянии от поверхности раздела фаз. Такой слой подобен конденсатору с металлическими обкладками. Потенциал в нем меняется линейно. [c.228]

    Представление о двойном электрическом слое, как о плоском конденсаторе, развитое в классических работах Гельмгольца, получило дальнейшее развитие в трудах Смолуховского, Гуи, Чэпмена, Штерна и других ученых. [c.176]

    Гуггенгейм пишет по этому поводу 1 В своих работах Гельмгольц, дает ясное определение моменту двойного слоя, а именно момент двойного слоя равен произведению заряда на расстояние между обкладками. Далее Гельмгольц говорит, что эта величина равна разности потенциалов между пластинками конденсатора, деленной на 4я. Из зтого следует, во-первых, что Гельмгольц употреблял электростатические единицы. Это ясно также из того, что помимо прочего нигде нет ни слова о вольте. Гельмгольц делает следующую подстановку  [c.92]

    Первая теория такого рода была предложена Г. Гельмгольцем в 1853 г. Он полагал, что двойной электрический слой состоит из двух слоев зарядов противоположного знака, находящихся друг от друга на расстоянии порядка диаметра молекулы воды слоя зарядов на металле и слоя притянутых к нему ионов. Одновременно предполагалось, что заряды в обоих этих слоях равномерно размазаны вдоль поверхности, так что можно провести полную аналогию между двойным слоем и обычным плоским конденсатором. [c.102]

    Итак, теория Гельмгольца находится в качественном согласии с рядом экспериментальных фактов. Именно поэтому при рассмотрении свойств двойного слоя часто прибегают к формуле плоского конденсатора. Вместе с тем теория Гельмгольца не охватывает всей совокупности экспериментальных фактов. Так, например, согласно этой [c.104]

    Итак, теория Гельмгольца находится в качественном согласии с рядом экспериментальных фактов. Именно поэтому при рассмотрении свойств двойного слоя часто прибегают к формуле плоского конденсатора. [c.108]

    Модельные представления о строении двойного слоя на границе электрод — раствор развивались в течение длительного времени. Первая работа относится к 1853 г., когда Г. Гельмгольц для описания границы между электродом и раствором предложил модель плоского конденсатора. Согласно теории Гельмгольца, к слою зарядов на металле жестко притянуты ионы противоположного знака, так что двойной слой представляет собой своеобразный плоский конденсатор с очень малым расстоянием между его обкладками (порядка диаметра молекулы воды). Эта теория предсказывала правильные по порядку величины емкости двойного слоя, объясняла форму электрокапиллярных кривых, но не могла объяснить зависимости емкости и пограничного натяжения от концентрации электролита и температуры. [c.162]

    Двойной электрический слой образуется электрическими зарядами, находящимися на металле, и ионами, несущими заряд противоположного знака, расположенными в растворе электролита вплотную к поверхности металла. Образующийся двойной слой подобен плоскому конденсатору, расстояние между обкладками которого определяется величиной радиусов ионов. Такая упрощенная картина, предложенная Г. Гельмгольцем, справедлива только при больших концентрациях растворов электролитов и больших величинах плотности заряда электрода. В большинстве реализуемых случаев строение двойного слоя отличается от описанного. [c.342]

    Согласно простейшей модели Гельмгольца, ДЭС состоит из двух плоских слоев зарядов, расположенных на молекулярном расстоянии один от другого и взаимодействующих между собой только за счет электростатических сил притяжения. Такая структура подобна плоскому конденсатору, и падение потенциала между слоями происходит линейно (рис. 25.5, /). [c.403]

    Теорию двойного электрического слоя иногда называют теорией плоского конденсатора и часто ошибочно связывают с именем Гельмгольца. [c.201]

    Первая количественная теория ДЭС была разработана Гельмгольцем в 1879 г. В то время о существовании ионов в расгворах не знали и Гельмгольц рассматривал ДЭС как плоский конденсатор, внешняя обкладка которого расположена в жидкости параллельно поверхности на расстоянии молекулярного порядка от нее (рис. 73). Потенциал отсчитанный от нулевого [c.195]

    Первую количественную теорию ДЭС разработал Гельмгольц в 1879 г. В то время о существовании ионов в растворах не знали и Гельмгольц рассматривал ДЭС как плоский конденсатор, внешняя обкладка которого расположена в жидкости параллельно поверхности на расстоянии молекулярного порядка от нее (рис. XII. 4). Потенциал il), отсчитанный от нулевого уровня, отвечающего глубине раствора (д =оо), г 5 = (г 5)д — (ф) е=ос, уменьшается линейно с расстоянием х от поверхности, в соответствии с теорией плоского конденсатора. [c.181]


    Можно ожидать (см. петит ниже), что диффузность, т. е. большая размытость слоя противоионов по сравнению с моделью Гельмгольца изменит только характер распределения скоростей смещения отдельных слоев жидкости в непосредственной близости к поверхности твердой фазы. При этом наблюдаемая на опыте скорость перемещения фаз относительно друг друга uo, которая, как и в модели Гельмгольца, определяется величиной фо, существенно не изменится (кривая 2 стремится к тому же пределу, что и Г)- На это, в частности, указывает то обстоятельство, что единственный параметр, определяющий геометрические характеристики двойного слоя в модели Гельмгольца, — расстояние между обкладками конденсатора б — не входит в конечное выражение. (Если какой-либо параметр, используемый при выводе, не входит в конечное соотношение, это обычно означает, что свойство системы, отражаемое этим параметром, не влияет на рассматриваемое явление.) В качестве наиболее близкого по физическому смыслу значения расстояния б может быть использована толщина ионной атмосферы б=1/> . [c.189]

    Первую количественную теорию строения двойного электрического слоя на границе металл — раствор связывают обычно с именем Гельмгольца (1853). По Гельмгольцу, двойной электрический слой можно уподобить плоскому конденсатору, одна из обкладок которого совпадает с плоскостью, проходящей через поверхностные заряды в металле, другая — с плоскостью, соединяющей центры тя- кестн зарядов 1, онов, находящихся в растворе, по притянутых электростатическими силами к иоверлиости металла (рис. 12.1). Толщина двойного слоя I (т. е. расстояние между обкладками [c.261]

    Поскольку в зaви имo tи Гельмгольца—Кройта содержание полярных компонентов в жидкости может проявляться только через диэлектрическую проницаемость, исследовалась зависимость-диэлектрических проницаемостей от содержания в них Уюлярных компонентов на установке, изображенной на рис. 20. Она состояла из куметра ВМ-311 (/), измерительного конденсатора с рубашкой охлаждения (2), ультратермостата ВЕ (3), контроль- [c.121]

    Первые предположения о его образовании были сделаны Квинке. Строение двойного электрического слоя впервые было представлено Гельмгольцем и Перреном по аналогии со строением плоского конденсатора. Предполагалось, что, как и в плоском конденсаторе, на границе соприкасающихся фаз заряды располагаются в виде двух рядов разноименных ионов. Толщина слоя считалась близкой к молекулярным размерам или размерам сольватированных ионов. Потенциал слоя снижается на этом расстоянии линейно до нуля. Поверхностный заряд <7 определяется в соответствии с теорией плоского конденсатора уравнением (11.80)  [c.54]

    Это классическое выражение для скорости движения жидкости при электроосмосе можно получить н на основе представлений двойного электрического слоя как плоского конденсатора, что и было сделано еще Гельмгольцем. Более строгий вывод соотношения (IV. 66) был затем дан Смолуховскнм. Поэтому уравнение (IV. 66) носит название уравнения Гельмгольца—Смолуховского. [c.221]

    Первая теория строения двойного электрического слоя (Гельмгольц) рассматривала его в виде плоского конденсатора, одной обкладкой которого является заряженная поверхность электрода, а вторую образует слой противоположно заряженных ионов, расположенный в электролите. Расстояние между обкладками бц принимается равным радиусу ионов г,.. В таком случае емкость двойног электрического слоя может рассчитываться по формуле [c.101]

    Впервые представление об образовании двойного электрического слоя было высказано Квинке (1859) и развитое работах Гельмгольца (1879). По этим представлениям, двойной электрический слой подобен плоскому конденсатору, одна обкладка которого находится в твердой фазе, другая — в растворе. Толщина конденсатора имеет порядок молекулярного радиуса. По Гельмгольцу, образование двойного электрического слоя происходит следующим образом. На поверхности коллоидных частиц адсорбируется преимущественно один из ионов, который и сообщает поверхности свой знак заряда. Под действием электростатических сил притяжения противоионы (или компенсирующие ионы) стремятся расположиться возможно ближе к ионам, адсорбированным на поверхности частиц. В результате образуются два слоя ионов, из которых один расположен на поверхности, другой — в растворе, на расстоянии молекулярного радиуса (рис. 93, /). Такая система ионов (в целом нейтральная) получила название двойного электрического слоя по Гельмгольцу. [c.314]

    Аномальные величины С и Х получаются вследствие того, что теория Гуи — Чапмена рассматривает ионы как частицы точечного размера, которые поэтому могут подходить к поверхности электрода на бесконечно малое расстояние. В действительности ионы не могут приблизиться к электроду на расстояние меньше их радиуса. Поэтому теория Гельмгольца, которая рассматривает двойной слой как конденсатор с толщиной, равной радиусу иона, дает более правильные величины емкости, чем теория Гуи — Чапмена. Таким образом, возникла задача сочетания основных представлений теории Гельмгольца и теории Гуи—Чапмена. Эта задача была решена О. Штерном. [c.110]

    Для количественного описания этого эффекта можно воспользоваться эквивалентной схемой, представленной на рис. 2.19 и основанной на следующих модельных допущениях 1) плотная часть двойного электрического слоя подчиняется модели двух параллельных конденсаторов 2) внешняя плоскость Гельмгольца является эквипотенциальной. Кроме того, обычно предполагают, что свойства диффузной части двойного слоя можно описать теорией Гуи-Чапмена и, следовательно, применить уравнение (2.95). [c.74]

    Строение двойного электрического слоя. Основываясь на экспериментальных данных, полученных Квинке при изучении электрокинетических явлений, Г. Гельмгольц предложил первую модель двойного электрического слоя. Согласно воззрениям Гельмгольца, в дальнейшем развитым М. Смолуховским и Ж. Перреном, двойной электрический слой рассматривается как заряженный плоский конденсатор. На поверхности находится слой ионов, называемых потенциалобразующими, а на некотором расстоянии от нее в жидкой фазе находятся, удерживаемые силой электростатического притяжения, ионы противоположного знака, называемые противоионами. Модель Квинке — Гельмгольца предполагает, что расстояние между плотным слоем противоионов и слоем потенциалопределяющих ионов повсюду одинаково. По условию электронейтральности удельные поверхностные заряды (поверхностные плотности зарядов) обенх составляюш,их частей двойного электрического слоя должны быть равны по абсолютной величине д+=д . Скачок потенциала для модели Квинке — Гельмгольца рассчитывается по известной формуле для плоского конденсатора 9=СД >1, в которой С—емкость плоского конденсатора на единицу площади, причем С = еео- - (еео — [c.87]

    При соприкосновении двух электропроводящих фаз между ними возникает электрическая разность потенциалов, называемая напряжением Гальвани Дф или е, которая сама по себе не может быть измерена. Это явление связано с образованием двойного электрического слоя. Двойной электрический слой состоит из слоев диполей, которые образуются вследствие перехода электронного газа металла наружу за пределы решетки положительных ионов или вследствие адсорбции дипольных молекул из раствора, а также из зарядового двойного слоя, возникающего в результате взаимодействия двух поверхностных дипольных слоев и непосредственного межфаз-ного перехода носителей заряда [2]. Простейшее представление о строении двойного электрического слоя дал Гельмгольц, согласно представлениям которого избыточные заряды размещаются по обеим сторонам поверхности раздела фаз в двух параллельных слоях, расположенных на небольшом расстоянии. Таким образом,электрический слой можно уподобить плоскому конденсатору. Более глубокое представление о строении двойного электрического слоя дали Гуи, Чапмен, Штерн и др. [4—6]. В общем принято считать, что двойной электрический слой по своему строению представляет один или несколько параллельно включенных конденсаторов, измеряя емкость которых можно получить представление о строении и составе двойного электрического слоя. [c.97]

    Впервые идея образования двойного электрического слоя на границе раздела фаз гетерогенных систем была предложена Г. Квинке и далее развита Г. Гельмгольцем. Двойной электрический слой представлялся аналогичным плоскому конденсатору, одна обкладка которого находится в твердой фазе, другая — в растворе. Толщина такого конденсатора б имеет порядок молекулярного радиуса. [c.323]

    Под строением двойного слоя понимают распределение зарядов в его ионной обкладке. Упрощенно ионную обкладку можно условно разделить на две части 1 — плотную, или гельмгольцев-скую, образованную ионами, практически вплотную подошедшими к металлу, 2 — диффузную, созданную ионами, находящимися на расстояниях от металла, превышающих радиус сольватированного иона. Толщина плотной части — порядка 10 см, диффузной — 10- —10 см. Величина скачка потенциала на границе раствор — металл складывается из падения потенциала в плотной части двойного слоя и падения потенциала в диффузной. Строение двойного электрического слоя определяется общей концентрацией раствора. С ее увеличением процессы, способствующие формированию диффузной части, ослабляются, размеры ее уменьшаются, двойной слой сжимается. В концентрированных растворах диффузная часть практически отсутствует и двойной электрический слой подобен плоскому конденсатору, что соответствуе т модели Гельмгольца, впервые предложившего теорию строения двойного слоя (1853 г.). Разность потенциалов, возникающую на границе раздела металл — раствор, называют электродным потенциалом.( [c.327]

    При рассмотрении строения мицеллы было показано, что при взаимодействии лиофобных коллоидов с электролитами на поверхности ядра адсорбируются определенные ионы из раствора. Ядро с адсорбированными на нем ионами того или иного знака взаимодействует с окружающим раствором. При этом благодаря электростатическому притяжению ионы, обладающие знаком, противоположным по отношению к потенциалопределяю-щим ионам, стремятся расположиться к ним как можно ближе. В результате этого образуются два близко расположенных слоя ионов один на поверхности (потенциалобразующие ионы) и другой в растворе (противоионы). Такая система называется двойным электрическим слоем Гельмгольца (рис. 122). Следует помнить, что в целом эта система электроней-тральна. В представлении Гельмгольца двойной электрический слой по добен плоскому конденсатору, внутренняя обкладка которого находится в твердой фазе, а внешняя — расположена в жидкости параллельно твердой поверхности ядра на расстоянии молекулярного порядка. Общий термодинамический по- [c.319]

    В соответствии с простейшей моделью Гельмгольца, пространственное разделение зарядов вблизи поверхности может рассматриваться как двойной электрический (ионный) слой, представляюш,ий собой две параллельные обкладки заряженного конденсатора, разделенные прослойкой дисперсионной среды с некоторой средней (эффективной) толщиной б. Одна обкладка конденсатора образована ионами, закрепленными на самой поверхности, — лоте -циалопределяющими ионами, другая — находящимися в среде противоионами-, при этом ионы, одноименно заряженные с поверхностью, так называемые ко-ионы оттеснены в объем раствора. Такое разделение зарядов приводит к возникновению разности потенциалов Дф между контактирующими фазами и, в данной модели, к линейному падению потенциала между обкладками конденсатора (рис. VII—2), [c.175]


Смотреть страницы где упоминается термин Гельмгольца, конденсатора: [c.474]    [c.315]    [c.474]    [c.41]    [c.128]    [c.87]    [c.180]    [c.217]   
Физическая химия поверхностей (1979) -- [ c.100 ]




ПОИСК





Смотрите так же термины и статьи:

Гельмгольца



© 2025 chem21.info Реклама на сайте