Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

ОПС—ООС определения свойств адсорбированных слоев ПАВ

    Метод дифференциальной емкости можно использовать для определения нулевых точек любых металлов, однако в случае твердых металлов появляются осложнения, значительно затрудняющие интерпретацию полученных результатов. Затруднения связаны с тем, что многие твердые металлы, в частности все металлы железной и платиновой групп, способны адсорбировать и окклюдировать значительные количества водорода или кислорода. Это должно влиять и на величину дифференциальной емкости двойного слоя, и на характер изменения ее хода с потенциалом. Кроме того, твердые металлы обладают обычно неоднородной поверхностью наличием микропор, трещин, нарушений идеальной кристаллической решетки (дислокациями) и т. п. Поэтому потенциал минимума дифференциальной емкости твердого металла не всегда можно отожествить с его потенциалом нулевого заряда. Наиболее надежные данные получены для таких мягких металлов, как свинец, цинк, кадмий и таллий, поверхность которых по своим свойствам наиболее близка к поверхности ртути. [c.256]


    Шай и Надь [187], исходя из представления о том, что при адсорбции из растворов на поверхности адсорбента образуется мономолекулярный слой адсорбирующегося компонента, предложили метод определения удельной поверхности из изотерм относительной адсорбции жидких смесей на поверхности раздела твердое тело — жидкость. Экспериментальная проверка этого представления показала хорошие результаты на поверхности раздела как твердое тело — жидкость, так и жидкость — пар. Это подтверждает далеко идущую аналогию в свойствах обоих типов разделяющей поверхности. Шай и Надь установили пять основных типов изотермы относительной адсорбции, существующих на поверхности раздела как жидкость — пар, так и твердое тело — двухкомпонентная жидкость (разумеется, если молекулярная адсорбция не осложнена хемосорбцией или значительной ассоциацией молекул). [c.99]

    Анодированные алюминиевые электроды обладают слоем, на котором хорошо закрепляются нанесенные растворы [20, 21]. Этот пористый слой образуется при электролизе в 30%-ном растворе серной кислоты и имеет удовлетворительную абсорбционную способность. При погружении электрода с таким слоем в солевой раствор на нем адсорбируется определенное количество соли, которое анализируется в искре. Недостаток такого электрода состоит в том, что свойства анодированного слоя очень чувствительны даже к небольшим изменениям в условиях анодирования. Поэтому различные партии электродов часто дают несоизмеримые результаты. [c.154]

    Для дисперсных систем, частицы в которых имеют лиофобную поверхность, образование сольватных слоев не характерно. Чтобы обеспечить их агрегативную устойчивость, применяют стабилизаторы, способствующие увеличению межфазного взаимодействия. В качестве таких стабилизаторов широко применяют ПАВ и ВМС, лиофилизирующие дисперсные системы. Молекулы ПАВ и ВМС, адсорбируясь на поверхности частиц, способствуют уменьшению поверхностного натяжения и образованию сольватного слоя. При стабилизации поверхность частиц приобретает свойства вещества-стабилизатора. Формирование пленки из ВМС происходит значительно медленнее, чем из ПАВ. Очевидно, для такой стабилизации дисперсных систем, как и при стабилизацт1и ионогенными стабилизаторами, необходимо определенное ориентирование молекул ПАВ II ВМС на межфазных поверхностях. [c.339]

    Теоретические представления о свойствах двойного электрического слоя на границе электрод/раствор электролита количественно соответствуют экспериментальным данным, полученным на ртути и некоторых жидких амальгамах II ]. Естественно поэтому, что для определения границ применимости указанных представлений к твердым электродам и выяснения вопроса о влиянии природы металла на свойства двойного слоя сравнивают основную характеристику двойного слоя — его емкость — на твердых металлах и ртути в различных условиях. Емкость двойного слоя на твердых металлах, так же как и на ртути, может быть определена путем измерения импеданса границы электрод/электролит. Однако при первых попытках определения емкости двойного слоя на твердых электродах из измерений импеданса возникли большие трудности. Причина этих трудностей в том, что в отличие от ртути многие твердые электроды способны адсорбировать водород и бывают идеально поляризующимися лишь в сравнительно узком интервале потенциалов, чаще же в большинстве электролитов вообще не обладают таким свойством. В результате этого электрическая эквивалентная схема границы твердый электрод/электролит содержит наряду с емкостью, эквивалентной двойному слою, одну или несколько электрических цепей, импеданс которых характеризует электрохимические процессы, и первой задачей является выделение емкости, эквивалентной двойному слою, из суммарно измеряемого импеданса. [c.5]


    Трудности определения емкости двойного слоя на твердых электродах являются причиной того, что в настоящее время количественные данные, характеризующие свойства двойного слоя, получены только на висмуте, свинце, кадмии, таллии, сурьме и олове, т. е. на металлах, плохо адсорбирующих водород. Значительное количество работ посвящено исследованию двойного слоя на серебре в различных электролитах [7, 10—17]. Серебро оказалось весьма сложным объектом исследования, имеющиеся экспериментальные данные в значительной мере противоречивы. [c.6]

    Избыток детергента может мешать фракционированию. Например, высаливание сульфатом аммония приводит к появлению на поверхности раствора слоя тритона Х-100, в котором часто содержатся нужные белки. Однако эффективного разделения при этом не происходит. Можно провести колоночную хроматографию или отделить белки с помощью гель-фильтрации (разд. 5.1), но не исключено, что мицеллы детергента будут двигаться в той же зоне, что и белок, и, следовательно, окажутся в одной фракции. Ионообменная хроматография успешно осуществляется в присутствии неионных детергентов (разд. 4.2 и 4.3). Действительно, тритон Х-100 в концентрации до 1% оказывает незначительное влияние на ионообменные свойства нормальных водорастворимых белков. Но солюбилизированные белки мембран могут находиться только в составе детергентных мицелл, что существенно влияет на процесс ионного обмена. Если исследуемый белок удается адсорбировать на ионообменнике, то избыток детергента свободно проходит через колонку. Это позволяет элюировать свободный (относительно) от детергента белок. С другой стороны, если полное удаление детергента приводит к денатурации белка, то, чтобы предотвратить это, в буфер вносят небольшое количество детергента (<0,1 7о). Собранная фракция будет, конечно, тоже содержать некоторое количество детергента. Тем не менее, так как обычно из смеси белков выделяют какой-то определенный фермент, присутствие в конечном препарате незначительной концентрации чистого детергента, не загрязненного жирами, не принесет большого вреда. Методы удаления избытка детергентов были недавно суммированы в обзоре [23]. [c.55]

    Общепринято считать, что двойной электрический слой, ограниченный между положительно заряженным (у катода — отрицательно заряженным) электродом и отрицательно заряженной областью раствора (слой Г ельмгольца), обладает свойствами конденсатора и имеет определенную емкость заряда. Он оказывает сильное влияние на электродные процессы. На рис. 8.2 приведена упрощенная схема двойного слоя. В реальных условиях электрохимического процесса явление осложняется адсорбцией на электроде веществ, присутствующих в растворе. Адсорбироваться могут молекулы растворителя, электродно-активные частицы, промежуточные и конечные продукты реакции. Структура и свойства двойного электрического слоя усложняются, так же как и скорость разряда электродно-активных частиц, так как на электродах возникают адсорбционно-десорбционные процессы, препятствующие электролизу. [c.292]

    Чем больше константа Генри, т. е. чем лучше адсорбируется вещество, тем медленнее оно движется в слое адсорбента. На использовании этой закономерности основана адсорбционная газовая хроматография, широко используемая как метод определения состава смесей. В поток инертного газа, движущегося через слой адсорбента, вводится анализируемая проба, и фиксируется выход отдельных компонентов из слоя путем изменения теплопроводности, плотности или иных свойств газовой смеси. Полученные данные позволяют количественно определять содержание отдельных компонентов. [c.510]

    Одним из методов разделения сложных смесей органических и неорганических веществ на отдельные компоненты является хроматографический метод анализа (хроматография). При хроматографическом разделении используются различные физико-химические свойства отдельных компонентов смеси. Например, разница в растворимости образующихся осадков, в распределении компонентов смеси между двумя несмешивающимися жидкостями, в адсорбции компонентов смеси на поверхности твердой и жидкой фазы и т.д. Во всех случаях разделения, как правило, участвуют две фазы — твердая и жидкая, твердая и газообразная и т. п. Процессы сорбции, осаждения, ионного обмена, распределения между фазами различного состава протекают непрерывно, при последовательном многократном повторении. Такой процесс осуществляется в хроматографической колонке (рис. 157). Анализируемая смесь в виде раствора (жидкая фаза) фильтруется через колонку, содержащую слой сорбента (твердая фаза). Каждое из растворенных веществ адсорбируется на определенном участке и образуются зоны адсорбции (первичная или фронтальная хроматограмма). При последующем промывании колонки чистым растворителем получают проявленную хроматограмму, т. е. разделение компонентов смеси. [c.298]


    Дерягин называет такие слои сольватными, приписывая им квази-упругие свойства. Однако он отказывается дать этому явлению сколько-нибудь определенное объяснение, допуская, что - поверхность может ориентировать или как-то изменить состояние прилегающего мономолекулярного слоя жидкости этот последний слой, в свою очередь, может ориеитиро вать следующий слой жидкости (или хотя бы вызвать в нем некоторое изменение состояния, связанное с некоторым уменьшением свободной энергии) . Мы умышленно привели цитату из работы Дерягина, чтобы показать, что для допущения существования толстых сольватных слоев (1 о.), обусловливающих расклинивающее действие, пока не найдено никаких ясных физических объяснений. Поэтому попытка наличием этих слоев объяснять различные явления в области коллоидов не имеет никакой определенной перспективы н находится в явном противоречии со всем существующим опытным материалом. В самом деле, допустим, что эффект, обнаруженный Дерягиным, является эффектом сольватационнЫ М и, следовательно, одновременно эффектом стабилизации. Так как минеральные коллоиды образуются из частиц, смачивающихся водой, и в этом смысле они обладают лиофильной поверхностью, мы должны были бы наблюдать значительный эффект стабилизации при условии диспергирования таких частиц в чистой воде, допуская при этом высокую степень дисперсности, обеспечивающую частицам достаточное броуновское движение. Между тем, опыт показывает, что в этих условиях невоз1можно получить сколько-нибудь длительно устойчивую систему и присутствие вещества, адсорбирующегося поверхностью с одной стороны, и растворимого в избранной дисперсионной среде, — с другой, является совершенно обязательным условием образования устойчивого золя или ух тойчивой суспензии (эмульсии). В этом отношении изложенная выше (ом. явления адсорбции) лангмюровская теория является более приемлемой по крайней мере для систем с дисперсиоиной средой, имеющей высокую диэлектрическую константу. Заметим [c.186]

    Несмотря, на наличие в системе большого числа- мицелл, суммарное количество мицеллярно растворенного мономера относительно невелико (1 мицелла может вобрать в себя лишь около 100 молекул углеводорода). Нерастворившийся мицеллярно углеводород существует в виде капель эмульсии, на внешней поверхности которых адсорбируются молекулы эмульгатора гидрофильной группой к воде, а гидрофобной — к углеводороду. С повышением концентрации эмульгатора в системе до некоторого значения, соответствующего адсорбционной насыщенности эмульсии, ее устойчивость повышается. Для предотвращения кбалесценцни капель эмульсии адсорбционные слои эмульгатора должны обладать определенными структурно-механическими свойствами вязкостью, упругостью и прочностью. Добавление электролитов в систему (до определенного предела) вызывает понижение поверхностного натяжения раствора эмульгатора и усиливает структурно-механические свойства адсорбционных слоев эмульгатора на Поверхности капель мономера. Количество эмульгатора, участвующего в образовании адсорбционных слоев, невелико, поскольку поверхность капель мономера значительно меньше поверхности мицелл. [c.380]

    Эмульсии относятся к микрогетерогенным системам, частицы которых видны в обычный оптический микроскоп, а коллоидные растворы принадлежат к ультрамикрогетерогенным системам, их частицы не видны в обычный микроскоп. Хотя по своей природе эти системы близки, но физико-химические их свойства различны и зависят в значительной степени от дисперсности. При образовании эмульсии образуется огромная поверхность дисперсной фазы. Так, количество глобул воды в одном литре 1%-ной высокодисперсной эмульсии исчисляется триллионами, а общая межфазная площадь поверхности — десятками квадратных метров. На такой огромной межфазной поверхности может адсорбироваться большое количество веществ, стабилизирующих эмульсию. В процессе образования эмульсии на хщспергирование жидкости затрачивается определенная работа и на поверхности раздела фаз концентрируется свободная поверхностная энергия — избыток энергии, содержащейся в поверхностном слое (на границе двух соприкасающихся фаз). Энергия, затраченная на образование единицы межфазной поверхности, называется межфазным поверхностным натяжением. Удельная поверхностная энергия измеряется работой изотермического и обратимого процесса образования единицы поверхности поверхностного слоя и обозначается а. [c.15]

    Эритроциты в крови можно по ряду свойств рассматривать так же, как частички гидрофобной эмульсии. На их поверхности адсорбированы молекулы белков, аминокислот и ионы электролитов. Все они сообщают эритроцитам определенный отрицательный заряд, а противоионы создают некоторый диффузный слой. При различных патологических процессах в организме, когда в кровн увеличивается содержание некоторых видов белков (либо особого глюкопротеида, относящегося к а-глобулинам, либо при инфекционных заболеваниях Y-глoбyлинoв), происходит процесс, очень напоминающий ионообменную адсорбцию место ионов электролитов на поверхности эритроцитов занимают белки, заряд которых ниже, чем у суммы замещенных ими ионов. В результате заряд эритроцитов понижается, они быстрее объединяются и оседают (ускоряется реакция оседания эритроцитов — РОЭ). Этот процесс зависит еще от ряда факторов содержания других белковых фракций и мукополисахаридов, концентрации эритроцитов в крови, наличия в крови микробов, наконец, расположения сосуда, в котором наблюдается РОЭ (в частности, скорость ее выше в наклонно расположенном капилляре). Оседание эритроцитов протекает сходно с процессом седиментации гидрофобного коллоида. Как показали исследования при помощи микрокинематографии (Кигезен), к имеющимся в крови агрегатам и монетным столбикам присоединяются отдельные эритроциты укрупнившиеся агрегаты оседают вначале быстро, а потом медленнее, так как в нижних частях капилляров их расположение становится настолько плотным, что частично сохранившиеся у них заряды начинают в большей мере противодействовать сближению частиц. Структура этого осадка напоминает губку чтобы его уплотнить, необходимо выжать оттуда воду, причем чем плотнее осадок, тем труднее это достигается. Поэтому в клинических исследованиях обычно не ожидают завершения оседания эритроцитов, а регистрируют результаты спустя 1—2 ч после начала реакции. Учитывая, что скорость процесса меняется на разных этапах, было предложено изучение его динамики измерением величины оседания эритроцитов каждые 15—30 мин (так называемая фракционная РОЭ). Этот метод представляет значительный интерес и находит широкое применение. [c.167]

    Определение основных смазывающих характеристик - критической нагрузки и диаметра пятна износа базовых компонентов и опытных образцов по ГОСТ 9490-75 на ЧШМ-3 - показало, что увеличение содержания тяжелых нефтяных остатков в смесях существенно улучшает параметры этих характеристик (см.рис.5, 6). Сопоставление полученных данных с углеводородным составом базовых основ показало, что граничный слой смазки, образующейся на металлической поверхности, характеризуется более высокими адгезионными свойствами за счет адсорбции кислородсодержащих соединений - сложных эфиров, кислот и спиртов и присутствием в нем асфальто-смолистых соединений, которые придают граничному слою смазки высокое сопротивление сближению контактирующих тел под действием нормальной нагрузки. При формировании мультимолекулярного граничного слоя происходит чередование адсорбирующихся молекул различного вида, неактивные молекулы оттесняются в периферические области структуры. [c.17]

    Химическая обработка стекла также приводит к возникновению некоторой разницы между двумя поверхностями. Если высушить протравленный электрод, асимметрический потенциал возрастает. Кратц объяснил это явление удалением растворимых щелочей с поверхности стекла, после чего остается набухший кремнекислородный слой. После высушивания богатый кремнеземом слой усыхает, создавая на мембране механическое напряжение [74]. Эти результаты еще раз подчеркивают важность состояния поверхности в определении электрических свойств электрода. Гамильтон и Хабберд [75] установили, что разница в способности внутренней и внешней поверхностей электрода адсорбировать краситель Vi toria Blue В может быть сопоставлена с разницей состояния поверхностей, вызванной химическим воздействием на стекло. Выло предположено, что асимметрический потенциал стеклянного электрода возникает вследствие разной способности двух поверхностей адсорбировать ионы. [c.277]

    Класси зские методы изучения двойного слоя и частиц, образующихся или адсорбирующихся на поверхности электрода, включают а) измерение электрической емкости [21], б) электрокапилляр-ное определение поверхностного натяжения (у жидких металлов) с использованием гиббсовской термодинамической теории поверхности и адсорбции и в) определение поверхностного натяжения по периоду капания или по весу капель. Каждый из этих методов опирается на косвенную оценку адсорбционных свойств поверхности, получаемую из термодинамического анализа она является достаточно строгой и может быть экспериментально проверена на некорродирующих жидких металлах. Эти методы кратко обсуждены ниже они наилучшим образом подходят к жидким металлам. Емкостный метод может применяться также и в случае твердых металлов [20, 30], хотя здесь имеются ограничения, связанные с частотной зависимостью емкостной составляющей импеданса поверхности [31]. Поэтому для изучения твердых металлов желательны более прямые методы, и в частности методы, применимые in situ, не приводящие к нарушению равновесных или стационарных процессов, протекающих на поверхно- [c.398]

    При плавлении кристаллов льда, собранных с фильтра и отжатых на фильтровальной бумаге, образуется жидкость, состоящая из двух равных по объему слоев воды и топлива. Топливо по своему фракционному составу и другим свойствам почти не отличается от фракционного состава и свойств исходного топлива, в котором были образованы эти кристаллы льда. В связи с этим было высказано предположение, что топливо адсорбируется на поверхности образующихся кристаллов льда. Дэвис 81], ссылаясь на работы, проведенные в Эмернвилле (США), отмечает, что некоторые компоненты реактивного топлива, а также продукты окисления и полимеризации при определенных условиях ассоциируются с капельками воды, выделяющимися из топлива. При низких температурах эти ассоциированные комплексы способны образовывать кристаллы, которые также задерживаются на фильтрах. В результате описанной выше адсорбции топлива на поверхности кристаллов льда и образования ассоциированных комплексов объем кристаллической массы, отлагающейся на фильтрах, увеличивается примерно в 2 раза. [c.69]

    Газо-жидкостный хроматографический анализ осуществляют преимущественно в виде проявительиого варианта. Для разделения веществ этим способом используют колонки, заполненные неподвижной фазой — твердым инертным адсорбентом-носителем. На твердый носитель наносят тонким слоем жидкую нелетучую фазу. Носитель не должен адсорбировать анализируемые вещества сквозь пленку нанесенной жидкости. Таким образом, он не участвует непосредственно в сорбционном процессе, а служит для создания большой поверхности неподвижной жидкой фазы. Разделение компонентов, следовательно, зависит от растворимости в неподвижной фазе, а не от адсорбционных свойств. Исследуемые вещества вводят в колонку, которую продувают газом-носителем (СОг, N2, Нг, Аг, Не), свободным от кислорода и примесей, не адсорбируемым и не растворимым неподвижной фазой. Таким образом, газ выполняет функцию подвижной фазы. В процессе хроматографии устанавливают постоянную скорость потока газа 0,3—10 л/час. Разделение смеси происходит при его движении по колонке. Компоненты смеси выделяются из колонки вместе с газом-носи-телем в порядке возрастания температуры кипения вещества или увеличения склонности к образованию водородной связи с жидкой фазой. Обнаружение и определение концентрации выделяющихся веществ [c.56]

    Рассмотрим влияние сплошной пленки на процесс химической коррозии во времени. Ири контакте с твердой поверхностью атомы жидкой среды адсорбируются па поверхности твердого тела (в случае смачивания твердой поверхности жидкой).. Адсорбировавшиеся атомы жидкости диффундируют в твердый материал, образуя моно.молекулярный слой продуктов реакции. При образовании тонкой пленки дальнейшее взаимодействие жидкой и твердой фаз определяется ее свойствами, точнее — коэффициентами диффузии атомов жидкой среды и твердого материала через пленку Толщина пленки может увеличиваться вследствие образования новых слоев продуктов реакции на границе с жидкой средой или твердым материалом и, наконец, в центральных частях начальной пленки в зависимости от соотношения коэффициентов диффузии. Если коэффициент диффузии атомов твердого материала значительно меньше коэффициента диффузии атомов жидкой среды, то последние будут быстрее достигать поверхности раздела слой новообразований — твердый материал. Где при определенной концентрации их решетка будет перестраиваться с образованием новых соедниеннй. Прп обратном сооттю-шеини коэффициентов диффузии образование этих продуктов происходит на границе с жидкой средой. [c.37]


Смотреть страницы где упоминается термин ОПС—ООС определения свойств адсорбированных слоев ПАВ: [c.146]    [c.146]    [c.20]    [c.12]    [c.73]    [c.41]    [c.233]    [c.391]    [c.40]    [c.20]    [c.277]    [c.491]    [c.230]   
Рабоче-консервационные смазочные материалы (1979) -- [ c.22 , c.23 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбированные слои

Адсорбированный слой



© 2025 chem21.info Реклама на сайте