Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Стеклянный электрод уравнение

    Предположение об обмене ионов водорода на ионы натрия были положены Никольским в основу вывода термодинамического уравнения для потенциала стеклянного электрода. Уравнение Никольского позволяет описать поведение стеклянного электрода не только в слабокислой и нейтральной областях, но и в переходной и в щелочной областях. Вывод этого уравненпя основан на том, что в области обратимости стеклянного электрода к ионам водорода можно записать  [c.423]


    Стеклянный электрод также применяется для измерения pH растворов. Потенциал стеклянного электрода зависит от pH раствора. Однако расчет pH пэ экспериментальным значениям потенциала электрода не может быть выполнен, так как уравнение (176.27) не выражает прямой зависимости ф от pH и стандартный потенциал электрода является его индивидуальной характеристикой. Для определения pH пользуются методом калибровки стеклянного электрода в буферных смесях. Для этого составляется электрохимическая цепь [c.497]

    Опишите устройство а) водородного электрода б) серебряного электрода в) стеклянного электрода г) каломельного электрода. Запишите электрохимические реакции для них и уравнение Нернста для каждого электрода. [c.268]

    В принципе к такому же уравнению несколько раньше Никольского пришел Дол. Никольский вывел свое уравнение термодинамическим путем, а Дол — кинетическим. Но в основе обоих выводов лежат одни и те же представления об обмене ионов водорода на катионы в пленке стекла. Дол учитывал энергию, которая необходима для того, чтобы водород из раствора перешел в стекло, а из стекла — в раствор, и энергию перехода катионов из стекла в раствор и из раствора в стекло. При этом предполагалось, что число мест на поверхности стеклянного электрода постоянно. Если общее число мест принять за единицу, то можно записать, что некоторая часть месту на поверхности занята ионами водорода, а остальная часть (1 — у) занята катионами. То же самое предположение, что и у Никольского + ац+ = [c.425]

    Стеклянный электрод. Стеклянный электрод относится к мембранным электродам, механизм действия которых все еще не вполне установлен, однако имеется немало состоятельных объяснений причин функционирования стеклянных электродов в качестве водородных электродов. И хотя в данном случае отсутствуют электрохимические реакции окисления и восстановления компонентов, обусловливающие возникновение разности потенциала на поверхности раздела стекло — раствор, зависимость потенциалов стеклянных электродов от pH растворов вполне закономерно описывается уравнением, аналогичным уравнению Нернста. [c.60]

    Вывод уравнения зависимости потенциала стеклянного электрода от pH основан на предположении равенства при равновесии электрохимических потенциалов водородных ионов в стекле и электрохимических нотенциалов ионов водорода в растворе. Такое предположение может быть сделано по отношению к любому электрохимическому равновесию на границе любых двух фаз, независимо от механизма действия электрода. [c.422]


    Уравнение (VI.67) строго справедливо для кислых, нейтральных и слабощелочных растворов. При больших pH наблюдаются отклонения от этого уравнения, величины которых зависят от сорта стекла, природы катионов раствора и pH среды. Эти отклонения называются щелочной ошибкой стеклянного электрода. В сильнокислых средах наклон зависимости Е — pH также отклоняется от предсказываемого [c.135]

    Стекла, состоящие из оксидов кремния, натрия и кальция, обладают резко выраженным специфическим сродством к ионам Н+. Вследствие этого при соприкосновении с нейтральными или кислыми растворами (водными) солей натрия в поверхностном слое подобного рода стекол ионы Na+ оказываются почти полностью замещенными на ионы Н+. Поэтому стеклянный электрод, содержащий мембрану из такого стекла, обладает преимущественно Н --функцией. Потенциал стеклянного электрода, иными словами, э.д.с. элемента типа (ХХП) со стеклянной мембраной должна подчиняться уравнению (IX. 98), которое принимает вид, если мешающие ионы Na+  [c.532]

    В настоящее время кроме ионообменных теорий поведение стеклянных электродов объяснено на основе жидкостно-мембранной концепции, предусматривающей наличие в стекле анионных узлов - вакансий в качестве дискретных лигандов для переноса катионов. В свете этих представлений выведено уравнение мембранного потенциала стеклянного электрода  [c.51]

    Уравнение зависимости потенциала стеклянного электрода от pH 437 [c.437]

    Ввиду того, что в уравнении стеклянного электрода (VII,46) величина Ж на практике получается несколько меньше теоретической и ео зависит от сорта стекла и даже от способа приготовления электрода (т. е. является неустойчивой величиной), стеклянный электрод (так же как и сурьмяный) перед определением pH исследуемого раствора предварительно калибруют по стандартным буферным растворам, pH которых точно известен. [c.244]

    Стеклянный электрод функционирует как натриевый электрод, и его потенциал не зависит от pH. Уравнение для щелочной ошибки стеклянного электрода АЕ можно получить, если вычесть уравнение (VI.72) из уравнения (VI.71)  [c.137]

    Используя уравнения (4.20) и (4.21), для потенциала стеклянного электрода получаем [c.95]

    В порции полученного ранее насыщенного гидроксидом цинка раствора определите pH универсальным индикатором Или при помощи рН- метра и стеклянного электрода. Начинайте к раствору приливать насыщенный раствор хлорида натрия. Почему изменяется среда раствора Напишите уравнение предполагаемой реакции. [c.407]

    Выведем уравнение для потенциала стеклянного электрода  [c.422]

    Область применения этого уравнения определяется значением константы, которая для обычных стекол имеет порядок Следовательно, если pH раствора будет 12 и выше, с влиянием ионов щелочных металлов уже нельзя не считаться. При таком pH проявятся ошибки стеклянного электрода в щелочной области, о которых говорилось раньше. Если раствор очень щелочной, т. е. в нем много ионов щелочного металла [c.426]

    Из уравнения (Х,62) следует, что в кислых растворах, в которых окись кремния начинает проявлять основные свойства, на потенциал стеклянного электрода оказывает влияние активность ионов водорода и анионов. [c.437]

    Т. е. уравнение отрицательной ветви стеклянного электрода в координатах ii-pH. [c.437]

    Основываясь на этом, выведем уравнение зависимости потенциала стеклянного электрода от pH, описывающее поведение стеклянного электрода при любом pH в кислой и щелочной областях, при любом содержании анио- [c.438]

    Потенциал стеклянного электрода с учетом подобного обмена может быть выражен уравнением [c.253]

    Из уравнения (10.14) следует, что потенциал стеклянного электрода зависит от двух величин активности ионов водорода и активности ионов щелочного металла в растворе. [c.254]

    Гросс и Гальперн [11] указали, что взгляд Горовица на постоянство значения упругости растворения металлов в стекле противоречит его допущению о роли адсорбированных стеклом из раствора ионов металла, и вывели для потенциала стеклянного электрода уравнения, аналогичные уравнениям Габера, приняв во внимание растворимость стекла в воде. Горовиц [12] ответил на это возражение Гросса и Гальперна, что упругость растворения ионов металла им не принималась постоянной. Для легкоплавких сортов стекла можно считать допущения Габера и Кле-менсевича в первом приближении правильными. Однако, как будет видно из кривых калибровки наших электродов, точной линейной зависимости между pH раствора и потенциалом электрода не существует, что вызывает необходимость установки значений электродного потенциала при различных реакциях раствора но буферным смесям. Теория Габера требует дополнения в том смысле, что постоянство концентрации водородных ионов в стекле определяется буферными свойствами систем кремневая кислота и ее соли. [c.30]

    Если бы величина стандартного потенциала стеклянного электрода, обозначенная через символ onst, была известна, то значение pH можно было бы рассчитать по уравнению (10.15). Поскольку эта величина неизвестна, то значение pH не рассчитывают, а находят по шкале рН-метра, градуированной в единицах pH. [c.90]


    II слабощелочных растворов. При больших pH наблюдаются отклонения от этого уравнения, значения которых зависят от сорта стекла, природы катионов раствора и pH среды. Эти отклонения называются щелочной ошибкой стеклянного электрода. В сильнокислых средах наклон зависимости Лет — pH также не совпадает с предс1йзываемым уравнением ( 1.67). Однако эта кислотная ошибка не зависит от природы анионов и катионов. Потенциал стеклянного электрода не искажается в присутствии каких-либо окислительно-восстановительных систем, в растворах солей тяжелых и благородных металлов, так называемых электродных ядов (сернистых, мышьяковистых и других соединений), органических веществ. Стеклянный электрод можно применять в окрашенных и мутных растворах, в средах, не обладающих буферностью, вблизи точки нейтрализации, причем скорость установления стдостаточно велика. Стеклянные микроэлектроды позволяют определить pH в небольших объемах жидкости и очень удобны для измерения pH в биологических объектах. [c.155]

    М. Дол, пользуясь квантовомеханическим методом, разработал свою теорию стеклянного электрода. Дол полагает, что в с тличие от водородного электрода, через стеклянную мембрану проникает ион водорода вместе с гидратной оболочной. Конечные уравнения Дола полностью совпадают с уравнением Никольского (VII, 28). Отклонение потенциала электрода от водородной функции в кислой среде, по Долу определяется выражением [c.195]

    Так как заряд водородного иона соответствует элементарному положительному количеству электричества, то переход иона водорода из одной фазы в другую соответсхвует перемещению единичного заряда. Следовательно, в уравнении для потенциала стеклянного электрода я = 1, таким образом [c.19]

    Ввиду того, что уравнение (IX. 98) очень широко применяют при работах с ИСЭ в разных областях науки и народного хозяйства, полезно на конкретном примере выяснить, в какой мере это теоретическое уравнение согласуется с экспериментальными данными. Сплошной линией на рис. IX. 7 изображена зависимость от pH = — gh при pNa = onst для стеклянного электрода, рассчитанная по уравнению (IX. 98). Экспериментальные значения , измеренные в растворах с различной активностью иона Н+ и постоянной активностью мешаюшего иона Na+ изображены точками. Рис. IX. 7 хорошо иллюстрирует совпадение экспериментальных данных с теоретической кривой. Это подтверждает основные положения теории ИСЭ. Лишь в переходной области отклонения часто превышают 2—3 мВ, причиной чего может быть не учтенная простой теорией некоторая энергетическая неравноценность связей ионов с мембраной в различных точках мембраны. В некоторых случаях наблюдается полное совпадение теории с экспериментом (в пределах погрешности измерений 0,5 мВ), например для стеклянных электродов с Ыа+-функцией в присутствии мешаюших ионов К+ или Li+. [c.527]

    Впервые методы определения коэффициента влияния ионов на потенцил ИСЭ были разработаны в 1937 г. на примере стеклянного электрода, чувствительного к ионам Н+. В основе различных методов лежит уравнение (IX.98) для однозарядных ионов. Для систем, содержащих разнозарядные ноны, коэффициенты влияния определяют по полуэмпирическому уравнению (IX. 99). [c.533]

    Значения коэффициента поглощения е раствора, содержащего обе формы, находят по уравнению (X. 124), а pH — потен-циометрически с помощью стеклянного электрода. Ионную силу всех растворов следует поддерживать постоянной. [c.654]


Смотреть страницы где упоминается термин Стеклянный электрод уравнение: [c.402]    [c.175]    [c.50]    [c.52]    [c.161]    [c.243]    [c.136]    [c.183]    [c.423]    [c.194]    [c.196]    [c.19]    [c.535]    [c.664]    [c.859]    [c.337]   
Определение pH теория и практика (1972) -- [ c.281 , c.283 ]

Определение рН теория и практика (1968) -- [ c.281 , c.283 ]




ПОИСК





Смотрите так же термины и статьи:

Электрод стеклянный



© 2025 chem21.info Реклама на сайте