Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионообменная хроматография теория

    Ионный обмени его применение. Изд. АН СССР, 1959, (319 стр.). Сборник статей различных авторов — крупных специалистов по ионному обмену. Отдельные статьи содержат сведения о классификации ионитов, их химическом составе и методах синтеза о теории ионного обмена и ионообменной хроматографии о применении ионитов в аналитической химии и технологии неорганических веществ, в промышленности, медицине о сорбции органических соединений. Каждая глава снабжена обширным библиографическим списком. [c.489]


    Теория динамики неравновесной молекулярной сорбции газов и паров дана в работах А. А, Жуховицкого [22]. В последние годы наибольшее число теоретических исследований посвящено разработке теории ионообменной хроматографии [3, 4—7, 10, 22, 28—33, 34—39]. Представляет большой интерес совмещение хроматографического метода на ионитах с электрофорезом [23]. [c.147]

    В литературе имеется довольно обширный материал по методам синтеза и исследованию ионитов, а также по теории и практике ионообменной хроматографии [63, 176, 195, 196, 199, 219]. [c.350]

    Между ионообменной хроматографией и адсорбционной молекулярной имеется существенное различие. Если молекулярная адсорбционная хроматография основана на явлении адсорбции, подчиняющейся в первом приближении теории Лэнгмюра, то ионообменная основана на стехиометрическом обмене ионов раствора с ионами ионита. В соответствии с этим вымывание адсорбированных веществ в молекулярной хроматографии может производиться чистым растворителем, тогда как в ионообменной в качестве вымывающего вещества необходимо применять растворы электролитов. [c.61]

    Так или иначе гидролиз солевых форм сильноосновных анионитов, несомненно, оказывает влияние на ионообменное равновесие, что наиболее отчетливо должно проявляться в динамических условиях хроматографического процесса. Если же учесть, что ионитовые смолы в последнее время стали использоваться в процессах с весьма жестким режимом (высокие температуры, давления, скорости фильтрации и т. п.), то становится понятным, какой большой интерес представляет собой знание закономерностей гидролиза солевых форм ионитов для теории и практики ионообменной хроматографии. [c.48]

    Ионообменная хроматография следов веществ. Теория расчета [1894], [c.312]

    Теория ионного обмена в колонках. Майер и Томпкинс применили к процессам ионообменного разделения теорию тарелок. Эта теория аналогична теории распределительной хроматографии, развитой Мартином и Синджем, и исходит из теории [c.567]

    В этой главе мы рассмотрели теории, которые объясняют размывание хроматографических зон. Эти теории являются основополагающими для понимания любого хроматографического метода. К тому же они имеют большую практическую ценность, давая хорошее объяснение возможных влияний многих различных экспериментальных переменных. Однако следует уделять внимание не только теоретическим обоснованиям процессов, происходящих в хроматографической колонке. Как уже было показано, детектор и система записи являются жизненно важными дополнениями в хроматографических измерениях, а сам хроматографический процесс является только частью в общей аналитической системе, которая сочетает разделение и количественное измерение. Такие системы находят огромное практическое применение в современном химическом анализе. В гл. 17 будут рассмотрены четыре специфических примера тонкослойная хроматография, газо-жидкостная хроматография ионообменная хроматография и молекулярно-ситовая хроматография. [c.551]


    Теоретические аспекты ионообменной хроматографии никоим образом не противоречат общей теории, рассмотренной в гл. 16. Концентрационные коэффициенты распределения, выведенные выше, могут быть использованы для определения удерживаемого объема, как уже отмечалось. Поскольку подвижной фазой является жидкость, ее оптимальные скорости движения очень низки. Диффузионные процессы, определяющие кинетику ионного обмена, происходят на расстоянии, равном приблизительно диаметру одного зерна смолы, а переменная р в выражении приведенной высоты тарелки здесь представляет диаметр зерна смолы. В колонке с наиболее высокой разрешающей способностью высота тарелки соответствует приблизительно пяти диаметрам зерен. [c.593]

    Из уравнения (III.85) видно, что роль внешней диффузии возрастает нри больших значениях коэффициента сорбции у, когда Г велико, как это было и в кинетике сорбции. В экспериментальных условиях нри ионообменной хроматографии легко варьировать коэффициент сорбции, сохраняя другие параметры почти постоянными. Поэтому ионообменная хроматография особенно удобна для проверки теории. Нужно, однако, заметить, что экспериментальное определение вкладов второго и третьего членов в уравнении (III.88) весьма затруднительно и на опыте легко определяется лишь сумма этих членов. Для того чтобы сопоставить с данными опыта величины, вычисленные из уравнения (III.80), необходимо проследить за распределением вещества по длине колонки. Это можно сделать с помощью радиоактивных изотопов. Однако проще исследовать ширину выходных зон, определяемых функцией с х , t) Xi — длина колонки). Средний квадрат размытия частиц по времени выхода из колонки (Ai) легко определить, используя моменты, вычисленные по уравнениям (III.67) и (III.68). Величину (Ai) можно найти, кроме того, и по полученным нами выше выражениям для ширины хроматографической зоны (Аж) . Будем считать, что продольная диффузия, определяемая последним членом уравнения (III.67), не играет роли. На основании уравнения (111.82) можно написать  [c.85]

    Основная цель применения ионообменной хроматографии для многочисленных задач технологии и анализа состоит в разделении смесей и поглощении отдельных компонентов их. Естественно, что и теория ионообменной хроматографии должна основываться на рассмотрении одновременного процесса обмена всех компонентов смеси. Однако до настоящего времени при расчетах как по статике, так и по динамике ионного обмена обычно исходят из законов статики обмена индивидуальных ионов. Степень такого приближения не всегда обоснована. Упрощенный подход объясняется в основном тем, что расчет реальных систем, представляющих собой смеси ионов, связан с громоздкими математическими вычислениями, которые для задач статики сводятся к решению систем нелинейных алгебраических уравнений, а для задач динамики— к решению систем нелинейных дифференциальных уравнений с частными производными. Многочисленные работы по статике обмена индивидуальных ионов свидетельствуют о том, что даже в этой сравнительно более простой области исследования окончательно не решены вопросы о механизме обмена и, следовательно, о количественных закономерностях, которым подчиняется обмен. [c.12]

    Следующим шагом была разработка теории динамики ионообменной сорбции смесей ионов — теории ионообменной хроматографии [4, 19, 22, 25]. Были сформулированы условия образования и инверсии ионообменных хроматограмм [42], получены уравнения для расчета фронтов ионообменных хроматограмм трех одновалентных ионов [43—45] и трех разновалентных ионов [46]. [c.81]

    ТЕОРИЯ И ПРИМЕНЕНИЕ ИОНООБМЕННОЙ ХРОМАТОГРАФИИ [c.5]

    Ионный обмен в смешанных водно-органических средах находится в начальной стадии изучения. Влияние природы и концентрации органического компонента, а также структуры бинарного раствора на избирательность обмена не исследовались систематически. Работы по изучению обмена минеральных ионов в смешанных средах носят отрывочный характер [1—3], а изучение обмена органических ионов в таких средах начато в самое последнее время [4]. Между тем систематические исследования в этой области не только расширят возможности ионообменной хроматографии, но, несомненно, будут способствовать дальнейшему развитию теории ионообменных процессов. [c.78]

    Одиннадцать глав книги охватывают почти все вопросы жидкостной хроматографии. Изложение начинается с описания современных ионообменников — ионообменных смол, их синтеза, свойств, стабильности и областей применения. Вопросам статики (равновесия), кинетики и динамики уделяется несколько глав, снабженных обширными библиографическими списками. Вариантам применения ионного обмена в гетерогенных системах посвящены последующие разделы книги. В них описаны неорганические и жидкие ионообменники, читатель знакомится с ионообменными бумагами, тонкослойной ионообменной хроматографией и т. п. Все эти материалы предлагаются отнюдь не в описательной форме обсуждается теория процесса, метод рассматривается с количественной точки зрения и иногда в нескольких вариантах. Последняя глава книги посвящена изучению комплексных ионов при помощи ионообменной хроматографии в колонке, на бумаге и с применением мембран. [c.5]


    ТЕОРИЯ ИОНООБМЕННОЙ ХРОМАТОГРАФИИ [c.117]

    В основу теории элютивной ионообменной хроматографии могут быть положены два различных подхода 1) теория тарелочного равновесия, или просто теория тарелок 2) теория массопереноса, или кинетическая теория. Вначале рассмотрим теорию тарелок. [c.124]

    В. ТЕОРИЯ ТАРЕЛОК В ЭЛЮТИВНОЙ ИОНООБМЕННОЙ ХРОМАТОГРАФИИ [c.124]

    Теорию динамики ионного обмена в хроматографии успешно развивает в течение последних лет В. В. Рачинский с сотрудниками. Мы сочли полезным выборочно изложить теоретические построения В. В. Рачинского, С. М. Рустамова и В. А. Гарнецкого в области ионообменной хроматографии, В. В. Рачинского и А. А. Лурье вобласти теории осадочной хроматографии в той части, которая, на наш взгляд, имеет наиболее близкое отношение к аналитической химии. [c.4]

    Теория ионообменной хроматографии сложна вследст вие многообразия химических и физических явлений, характерных для обменного поглощения ионов на ионообменных сорбентах. В соответствии с природой этих явлений она слагается из статики (равновесия), кинетики и динамики ионообменных процессов. Ниже рассматриваются элементы теории ионообменно-хроматографического метода [c.172]

    К числу наиболее важных в практическом отнощении приложений динамического модифицирования относится ион-парная хроматография. Особое значение этого метода определяется осложнениями, которыми зачастую сопровождается хроматография ионогенных соединений. Так, даже самые современные ионообменные колонки по эффективности существенно уступают колонкам, заполненным силикагелем и алкилсиликагелями. С другой стороны, ионогенные соединения в режиме обращенно-фа-зовой хроматографии "обычно дают асимметрические пики. К тому же наиболее гидцофильные органические кислоты и основания вообще слабо удерживаются неполярными сорбентами. Ион-парная хроматография во многих случаях совмещает в себе достоинства обращенно-фазовой и ионообменной хроматографии. Основные аспекты теории и практического использования ион-парной хроматографии изложены в работах [65, 123, 156, 204, 408]. [c.170]

    Изучение закономерностей процесса набухания ионитовых смол при изменении состава или концентрации контактирующего с ними раствора представляет несомненный интерес для теории и практики ионообменной хроматографии. Этому посвящено большое число исследований, в которых основное внимание акцентировано на набухании катионооб-меннпков. И лишь в последнее время появились работы, относящиеся к не менее важным вопросам набухания анионитовых смол [1, 21 [c.32]

    В теории хроматографии часто используется послойный метод расчета, который основывается на предположении, что непрерывный процесс в хроматографической колонке можно приближенно рассматривать как ряд равновесий в небольших слоях сорбента определенной длины. Предполагается, что после установления равновесия в первом слое раствор из него переводится во второй слой, так что количество сорбируемого вещества при этом не изменяется, а в колонку вводится новая порция раствора. Элементарные слои, в которых устанавливаются равновесия, называются теоретическими тарелками . Обычно высоту теоретической тарелки определяют опытным путем. Метод теоретических тарелок применительно к расчету ионообменной хроматографии был развит в работе Майера и Томпкинса [9]. По этому методу может быть получена величина среднего квадрата размытия хроматографической зоны. Расчет дает [18] [c.86]

    В настоящее время методы хроматографического разделения успешно развиваются в нескольких направлениях и большими коллективами исследователей. Выполняются глубокие теоретические исследования в области общей теории хроматографии и ионного обмена в Институте физической химии АН СССР в Москве (К. В. Чмутов), Московской сельскохозяйственной академии (В. В. Рачинский), ГЕОХИ АН СССР (М. М. Сенявин), Московском университете. Воронежском университете. Институте физической химии АН УССР. Аналитические приложения ионообменной хроматографии развиваются в Московском университете (Т. А. Белявская), Краснодарском сельскохозяйственном институте (И. К. Цитови ч), Томском университете (Г. А. Катаев) и многих других учреждениях. [c.81]

    Мартин и Синж [21) создали тарелочную теорию хроматографических колонок, аналогичную теории процессов экстракции и дистилляции. С целью расчета разделений колонка с ионитом рассматривается как состоящая из большого числа тарелок, каждая из которых последовательно приходит в равновесие с очередной порцией раствора. К ионообменным разделениям тарелочная теория применена Томпкинсом и Майером 23, 40] и затем в уточненном виде Глюкауфом [13, 14]. (Теория Глюкауфа будет рассмотрена подробно в гл. 6.) Большой интерес представляет применение этой теории к аналитическим разделениям, выполняемым методом ионообменной хроматографии. Другая теория, также представляющая интерес для химика-аналитика, развита недавно в работе Гамильтона, Богю и Андерсона [17]. [c.102]

    Кривые элюирования могут теоретически обсуждаться по аналогии с выходными кривыми. Иначе говоря, может быть использована либо теория, основанная на непрерывных переменных, либо тарелочная теория. Первая из этих теорий применялась к ионообменной хроматографии различными авторами, работы которых уже цитировались. Следует подчеркнуть, что сделанное в разделе 5. 3 (стр. 101) замечание о влиянии изотермы обмена на остроту фронта остается справедливым и для стадии элюирования. Это означает, в частности, что нри выпуклой (благоприятной) изотерме обмена передний фронт кривых элюирования должен быть само-заостряющимся, а задний — растянутым. При разделении малых количеств, когда изотерма линейна, в элюентной хроматографии должны получаться симметричные кривые, а в вытеснительной — все границы полос должны быть самозаостряющи-мися. [c.111]

    Классическую ионообменную хроматографию по описанному вьиие механизму проводят в водных средах. И соответственно широкое распространение она получила для разделения различных природных, лекар-ственньк и других веществ, ионизирующихся в водных растворах. Теория и техника классической ИОХ подробно описаны в литературе [3, 4]. [c.90]

    Радиохроматографический метод использован для проверки теории фронтальной динамики ионообменной сорбции одного входящего иона [20, 21, 24, 26, 31 —35, 78—82], элютивной динамики ионобменной сорбции [32—34], теории фрохгтальной ионообменной хроматографии [44—46, [c.82]

    М. М. С е н я в и н. Элементы теории ионного обмена и ионообменной хроматографии. Сб, Ионный обмеп и его применение . М., Изд-во АН СССР. 1959. [c.98]

    Метод ионообменной хроматографии в настоящее время широко используется для получения чистых препаратов редкоземельных элементов (РЗЭ) [1—4]. Известно большое число различных методик хроматографического разделения смесей РЗЭ, но многие из них носят эмпирический характер. Наряду с этим в литературе имеется ряд сообщений, посвященных выбору условий хроматографического разделения смесей. Мейер и Тонкине [5] использовали теорию тарелок для описания процесса элюирования РЗЭ раствором лимонной кислоты теоретические кривые вымывания совпали с опытными. Метод расчета применим также для определения чистоты РЗЭ, разделяемых при помощи процесса элюирования. Корниш [6], используя выражение, данное Глюкауфом для высоты, эквивалентной теоретической тарелке (ВЭТТ), применил теорию тарелок для предсказания условий разделения смесей ряда элементов. В работах Масловой, Назарова и Чмутова [7,8] была рассчитана величина ВЭТТ для процесса вымывания церия раствором молочной кислоты, что дало возможность произвести расчет кривой элюирования и установить условия получения элемента с заданной степенью чистоты. В работе тех же авторов [8] на примере разделения церия и прометия молочной и пирофосфорной кислотами был проведен расчет процесса градиентного элюирования РЗЭ, с использованием теории Фрейлинга. Расчет удовлетворительно совпадает с экспериментальными данными. В работах Еловича и сотр. [9—12] получено выражение для расчета процесса разделения близких по свойствам элементов. На примере разделения трансурановых элементов при помощи ЭДТА показано решающее значение комплексообразования по сравнению с обычным ионным обменом. В работах Материной, Сафоновой и Чмутова[13] рассмотрена возможность применения фронтального анализа в ионообменной комплексообразовательной хроматографии. Авторы изучали процесс комплексообразования в зависимости от pH среды. Маторина [14] изучила зависимость равновесного коэффициента разделения от pH [c.170]


Библиография для Ионообменная хроматография теория: [c.172]    [c.487]    [c.119]    [c.125]    [c.172]    [c.219]   
Смотреть страницы где упоминается термин Ионообменная хроматография теория: [c.52]    [c.363]    [c.84]    [c.89]    [c.43]    [c.204]    [c.224]    [c.125]   
Новые методы анализа аминокислот, пептидов и белков (1974) -- [ c.242 ]




ПОИСК





Смотрите так же термины и статьи:

Ионообменная хроматографи

Ионообменный теория

Хроматография ионообменная



© 2025 chem21.info Реклама на сайте