Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водородные связи и системы с переносом заряда

    Если два вещества имеют перекрывающиеся полосы поглощения, то на определенной частоте (или частотах) их молярные коэффициенты поглощения равны. При изменении соотношения концентраций указанных веществ (но при постоянстве их суммарной концентрации) оптическая плотность образца на этой частоте (частотах), очевидно, не будет меняться (рис. 4.4). Эти особые точки спектра носят название изобестических точек, являющихся, таким образом, критерием наличия в системе определенного количества различных компонент (или разных форм одного и того же соединения). Метод изобестических точек, подробно описанный в спектроскопической литературе, находит широкое применение при решении самых разнообразных физико-химических вопросов (конформационные и таутомерные проблемы, ионизационные равновесия, процессы сольватации и ассоциации, влияние водородной связи, эффекты переноса заряда и т. д.). [c.125]


    Слабые химические взаимодействия соответствуют изменениям энергии в 300—400 раз меньшим возникновение новых связей при этом часто не сопровождается разрывом прежних, а лишь некоторым ослаблением их. Поэтому такие взаимодействия способствуют образованию большего числа связей и в целом повышению уровня структурирования системы — объединению ее фрагментов в единое целое. Слабые химические взаимодействия в сложных молекулах более специфичны, чем сильные, в том смысле, что за счет их энергии не всегда можно преодолеть барьеры, обусловленные особенностями геометрии молекулы, и поэтому геометрические факторы приобретают существенное значение в качестве критериев выбора пути реакции. Слабые химические взаимодействия могут быть обусловлены перераспределением электронной плотности, переносом заряда и особенно часто — водородными связями. [c.241]

    Силы отталкивания способствуют обмену кинетической и потенциальной энергий между молекулами, установлению термодинамического равновесия. Межмолекулярные химические связи возникают в результате перераспределения электронной плотности в пространстве между молекулами, частичного переноса заряда от молекулы донора к молекуле акцептора. Такой перенос электронного заряда понижает энергию системы и приводит к образованию молекулярных ассоциатов в чистых жидкостях и комплексных соединений в растворах. Разновидностью межмолекулярных химических взаимодействий является водородная связь, осуществляемая с участием водорода. Атом водорода, ковалентно связанный с атомом фтора, кислорода, азота, хлора, серы, фосфора, углерода, может образовать вторую связь с одним из таких же атомов другой молекулы. В воде, спиртах и кислотах энергия водородной связи составляет 20,9 —33,4 кДж/моль в бензоле, растворе ацетон — вода — около 4,2 кДж/моль. [c.247]

    Как и при разделении на ранее описанных полимерных ХНФ, механизм хирального распознавания в данной системе является сложным и до конца не выяснен. Однако основные причины удерживания сорбата были выявлены в ходе систематических исследований влияния его структуры и состава подвижной фазы на коэффициент емкости. Во многих отношениях альбумин-силикагелевый сорбент ведет себя подобно обращенно-фазовым материалам на основе алкилированного силикагеля. Спирты, преимущественно пропанол-1, помогают регулировать время удерживания, поскольку вызывают его быстрое уменьшение вследствие ослабления гидрофобных взаимодействий с сорбентом. Оптимизировать состав подвижной фазы можно, варьируя тремя основными параметрами, а именно pH, ионной силой и органическим растворителем-модификатором [90]. Вероятно, в любой хроматографической системе одновременно наблюдается влияние диполь-ионных и гидрофобных взаимодействий. Кроме того, возможно образование водородных связей и комплексов с переносом заряда. Большое влияние свойств подвижной фазы на значения к разделяемых энантиомеров можно объяснить зависимостью свойств белков от распределения заряда и его конформации. БСА состоит как минимум из 581 остатка аминокислот, связанных в единую цепь (мол. масса 6,6-10 ), и его надмолекулярная структура в значительной мере определяется присутствием в молекуле 17 дисульфидных мостиков. При рН7,0 полный заряд молекулы равен - 18, а изоэлектрическая точка равна 4,7. Как это хорошо известно из химии ферментов, смена растворителя способна вызывать изменения в структуре связывающего центра белка в результате изменения его заряда и конформации. [c.133]


    Необходимо иметь в виду, что наличие у адгезива и субстрата групп, способных к образованию водородных связей, колшлексов с переносом заряда, ион-дипольных и других видов взаимодействий, еще не означает, что в этой системе может быть легко до- [c.42]

    ТГФ). Качественно те же результаты получены нами для системы вода — ТГФ [9]. В литературе имеются данные по изменению параметров электронной структуры ряда других систем с водородной связью [7]. Во всех случаях отмечается перенос доли отрицательного заряда с молекулы донора на кислородный атом ОН-группы. [c.182]

    ВОДОРОДНЫЕ СВЯЗИ и СИСТЕМЫ С ПЕРЕНОСОМ ЗАРЯДА [c.108]

    Водородные связи и системы с переносом заряда [c.109]

    НОГО и вращательного движения, одновременно сойтись в одном и том же месте и в правильной ориентации, способствующей трансформации комплекса в переходное состояние. Статистические факторы такого рода и определяют энтропию активации реакции. Брюс [124] нашел среднее (экспериментальное) значение (—7 А5 /кинетический порядок), равное 18,4 3,3 кДж-моль , что соответствует снижению скорости в 1,7Ч10,3-10 раза на каждую дополнительную частицу, входящую в уравнение скорости и, следовательно, в переходное состояние. Дженкс [119] оценил максимальную эффективную мольность во внутримолекулярной реакции примерно в 10 моль-л близка к наблюдаемой в случае (71) , что соответствует проигрыщу в энтропии активации в 146 Дж--МОЛЬ в реакции с одним дополнительным участником в переходном состоянии. В случае химотрипсина имидазол и нуклеофильная НО-группа серина принадлежат одной и той же молекуле и фиксированы друг относительно друга сетью водородных связей системы переноса заряда. Специфические суб- [c.523]

    Каталитическую активность а-химотрипсина нельзя приписать исключительно наличию системы переноса зарядов. Из рентгено структурных исследований следуют многие другие факторы, от ветственные за каталитический процесс. Было обнаружено де вять видов специфических ферментсубстратных взаимодействий которые повышают эффективность а-химотрипсина. Например стабилизация тетраэдрического интермедиата, а следовательно понижение энергетического барьера переходного состояния, со провождается образованием водородной связи между карбониль ной группой субстрата и амидным атомом Ser-195 и Gly-193 В химотрипсиногене эта водородная связь отсутствует. Действи тельно, уточнение структур химотрипсиногена и а-химотрипсина с помощью рентгеноструктурного анализа показывает различия в расположении каталитической триады в зимогене и ферменте. Это конформационное изменение в общей трехмерной структуре фермента, возможно, вызывает значительные изменения химических свойств каталитического центра, что может играть важную роль в увеличении ферментативной активности при активации зимогена. [c.221]

    Правила связывания — их называют правилами валентности — появились во второй половине XIX в. Эти эмпирические правила получили систематическое обоснование, когда стало очевидным значение периодической системы как направляющего принципа новой теории. Был сделан большой шаг вперед получение, исследование и практическое использование новых, не встречающихся в природе соединений стало повседневной практикой. Этот успех в свою очередь привел к необходимости объяснения с точки зрения правил валентности огромного, все возрастающего количества новых химических данных. Чтобы справиться с этими новыми фактами, правила валентности приходилось все более и более усложнять. Поскольку общей фундаментальной теории, объединяющей все эти данные, не было, химикам пришлось ввести классификацию соединений по типу связи . К концу первой половины XX в. химики манипулировали сложным списком, включающим ковалентные, ионные, йеталлические, координационные, дативные, хелатные, мости-ковые, одноэлектронные, водородные связи и связи с переносом заряда. Химическую связь объясняли обобществлением электронов, обменными силами, спариванием спинов, перекрыванием , сте-рическими соображениями и понижением кинетической энергии. С помощью периодической системы все это было приведено в какое-то подобие рабочего порядка. Каждому работающему химику приходилось знать эту сложнейшую систему наизусть — это давало возможность хотя бы интуитивно предвидеть, какой химический состав и какой тип химической связи можно ожидать при синтезе новых соединений. Отсутствие подхода, основанного на более общих соображениях аЬ initio, или из первых принципов , вызывало презрение физиков-теоретиков впрочем, извиняться химики не собирались, да в этом и не было надобности. К 1950 г. было синтезировано около миллиона соединений и число новых соединений возрастало со скоростью двух или трех сотен в день. [c.8]

Рис. 9.6. Предполагаемая последовательность стадий при катализе, осуществляемом хипотрипсином и родственными ему сериновыми протеиназами. В каталитическом центре функционирует система переноса заряда (а), включающая аспарагиновую кислоту, гистидин, серии, которые связаны водородными связями. Анион (гидроксидной группы серина) осуществляет нуклеофильную атаку углерода расщепляемой пептидной связи субстрата образуется ацилфермент и освобождается аминный продукт (б). Гидролиз ацилфермента (е) возвращает активный центр Рис. 9.6. Предполагаемая <a href="/info/9312">последовательность стадий</a> при катализе, осуществляемом хипотрипсином и родственными ему <a href="/info/200080">сериновыми протеиназами</a>. В <a href="/info/134503">каталитическом центре</a> функционирует <a href="/info/103645">система переноса заряда</a> (а), включающая <a href="/info/879">аспарагиновую кислоту</a>, гистидин, серии, которые <a href="/info/917">связаны водородными связями</a>. Анион (<a href="/info/147025">гидроксидной группы</a> серина) осуществляет <a href="/info/313307">нуклеофильную атаку углерода</a> расщепляемой <a href="/info/7320">пептидной связи</a> <a href="/info/908327">субстрата образуется</a> ацилфермент и освобождается <a href="/info/1201002">аминный продукт</a> (б). <a href="/info/1904076">Гидролиз ацилфермента</a> (е) возвращает активный центр

    Тем не менее модель Роджерса и Брюса поддерживает гипотезу переноса зарядов, поскольку имеются данные о существенном ускорении реакции в случае использования почти безводного ацетоинтрила или толуола. В этих условиях система водородных связей замкнута внутри молекулы и не обменивается со средой, т. е. возможна реализация механизма при нейтральных pH атака молекулой воды, сопровождающаяся обп1,еосновным катализом, причем диполярное переходное состояние образуется из нейтрального основного состояния. В ацетонитриле это могло бы произойти только в ирисутствии находящегося рядом карбокси-аниона. [c.228]

    Водородная связь образуется путем электростатического и донорно-акцепторно-го взаимодействия. Энергия водородной связи включает три составляющие электростатическую энергию притяжения, преобладающую на больших расстояниях, энергию поляризации (ориентационное и индукционное взаимодействие) и переноса заряда, проявляющуюся при уменьшении расстояния и способствующую притяжению молекул, и энергию отталкивания. Силы притяжения и отталкивания в водородном мостике сбалансированы. В зависимости от энергии связи водородные связи подразделяют на сильные (120-250 кДжмоль ) и слабые (8-28 кДжмоль ). Появление водородной связи понижает суммарную энергию системы. [c.96]

    Н. Д. Соколов, разработавший квантовомеханйческую теорию водородной связи на основе ВС-метода. Согласно Соколову [32], [к-31], при образовании водородной связи помимо чисто электростатического, ориентационного, эффекта происходит делокализация электронного заряда, т. е. частичный перенос заряда от молекулы донора В—Кг к молекуле акцептору К]—Н. Такой перенос электронного заряда дополнительно понижает энергию системы и приводит к образованию комплекса. Для упрощения рассмотрим только мостик А—Н ..В. В связи А—Н положительный заряд на самом атоме Н мал. Но в процессе образования Н-связи электронный заряд с Н-атома перетекает на атом А, тем самым высвобождая х-орбиталь водорода для приема от атома В электронного заряда неподеленной пары, который и свяжет атомы Н и В водородной связью. При этом высвобождение. -орбитали атома Н оголяет протон. Поле протона велико, и притяжение им электронного заряда атома В весьма эффективно, в то же время других своих электронов около протона нет, и поэтому отталкивание молекулы ВК от К1АН в области атома Н сильно понижается. Оба эти результата [c.268]

    О том, что взаимодействие макромолекул целлюлозы в ее аморфных областях с молекулами воды является преобладающим, свидетельствует экзотермичность взаимодействия целлюлозы с водой [79]. Принимая, что в крахмале все ОН-группы доступны для воды, был рассчитан тепловой эффект присоединения 1 моль воды к группе ОН, он составил - 7,1 кДж [80]. Термодинамическое изучение взаимодействия воды с аморфной целлюлозой [81] показало, что при пониженном содержании воды взаимодействие сопровождается изменением как энтальпии, так и энтропии системы. Парциальная энтропия аморфных областей целлюлозы возрастает, а парциальная энтальпия воды уменьшается. Это обусловлено упорядочиванием молекул воды и разупоря-дочиванием сегментов целлюлозы при взаимодействии. При увеличении содержания воды упорядочивание молекул воды в системе уменьшается, а упорядочивание сегментов целлюлозы увеличивается, т.е. энтальпия возрастает по абсолютному значению, и ее вклад в свободную энергию образующейся системы становится преобладающим. Адсорбированная вода, ослабляя систему водородных связей в доступных областях целлюлозы, оказывает пластифицирующее действие на целлюлозу [76, 82], приводит к расстекловыванию аморфных областей и переводу полимера в высокоэластическое состояние благодаря возрастанию сегментальной подвижности, увеличению свободного объема, появлению свободных от водородных связей функциональных групп. Можно предполагать, что при расстекловывании становятся возможными и конформационные переходы элементарных звеньев целлюлозы, понижается энергия активации свободных ОН-групп. При этом вероятно повышение кислотности свободных от водородных связей гидроксилов [83]. Изменение сегментальной подвижности в присутствии воды происходит за счет индукционных эффектов при образовании водородных связей вода-целлюлоза с делокализацией электронной плотности [84]. Расчеты квантово-химическим полуэмпиричес-ким методом ППДП комплексов целлобиозы с водой и другими растворителями подтвердили [85], что при их взаимодействии атомы кислорода как целлобиозы, так и воды, участвующие в образовании водородной связи, получают дополнительный отрицательный заряд по сравнению с тем, который они имели до взаимодействия. Это закономерный результат переноса заряда при образовании комплекса. Установлено также, что возможно взаимодействие молекул воды не [c.379]

    Хроматографическое разделение оптических изомеров обусловлено диастереомерной ассоциацией хиральной среды, созданной в колонке, и энантиомерных сорбатов. Разнообразие экспериментальных условий, при которых наблюдалось непосредственное разделение оптических изомеров, также свидетельствует о том, что необходимое различие в ассоциации может быть следствием различия в типах молекулярных взаимодействий. Ассоциация, которую количественно можно выразить через константу равновесия, является функцией как связывающих, так и отталкивающих взаимодействий, вовлеченных в этот процесс. Отталкивание обычно можно рассматривать как следствие стерических взаимодействий, но оно может вызываться и диполь-дипольными взаимодействиями, тогда как связывающие взаимодействия могут иметь самую различную природу. Это и водородная связь, и электростатическое или диполь-дипольное притяжение, и взаимодействия с переносом заряда, и гидрофобные взаимодействия (в водных системах). Как мы увидим в дальнейшем, уже одного типа связывающих взаимодействий может оказаться достаточным для разделения энантиомеров. Например, соверщенно очевидно, что для разделения энантиомеров в некоторых видах как ГХ, так и ЖХ достаточно даже удерживания, обусловленного образованием всего лишь водородной связи. Тот факт, что энантиомерные сорбаты, несущие только один заместитель, способный к образованию водородных связей, можно разделить в этих условиях, указывает, что для проявления хиральной дискриминации в этом виде хроматографии необходим только один тип удерживающих сил. [c.73]

    Более сильными и дальнодействующими являются специфические взаимодействия. К их числу относится водородная связь, возникающая между молекулами, содержащими подвижные атомы водорода, и сильноэлектроотрицательными атомами других молекул. Энергия такой связи составляет 20-40 кДж/моль, что достаточно для образования молекулярных ассоциатов и димерных молекул. Весьма сильные специфические взаимодействия могут возникать между молекулами с я-электронной системой (донор электрона) и молекулами, имеющими большое сродство к электрону (акцептор электрона). Результатом может быть образование комплексов с переносом зарядов. Имеются данные, что прочные комплексы могут также образовываться за счет взаимодействия неспаренного электрона свободных радикалов с делокализованными 7с-электронами конденсированных ароматических фрагментов молекул. Такие взаимодействия характерны для процессов образования ассоциатов из асфальтенов и смол. [c.752]

    Наличие у адгезива и субстрата групп, способных к образованию водородных связей, комплексов с переносом зарядов, ион-дипольных и других взаимодействий, еще не означает, что в этой системе может быть легко достигнута высокая адгезионная прочность. Число функциональных групп адгезива и субстрата, вступивших во взаимодействие, лишь косвенным образом связано с их общим количеством, а иногда эта связь вообще отсутствует. На первый план выступает вопрос о взаимном соответствии структурных параметров адгезива и субстрата, о доступности функциональных групп соединяемых материалов. Химическая инертность таких материалов, как полиэтилентерефталат, полипиро-меллитимид и политетрафторэтилен, также связана, очевидно, в первую очередь со стерическими факторами. В большинстве случаев значительная часть функциональных групп на поверхности раздела адгезив — субстрат по тем или иным причинам не участвует во взаимодействии. Поэтому каждое молекулярное взаимодействие функциональных групп на границе раздела фаз на учете . Нужно стараться не допускать уменьшения числа этих взаимодействий. [c.368]

    Имеется несколько работ, в которых теоретически изучалось изменение интенсивности колебаний А—Н при образовании Н-связи. В некоторых из них, как, например, в расчете с ограниченным базисным набором [2], увеличение интенсивности в димере формамида объясняется переносом заряда между молекулами. Но, как уже отмечалось выше, в слабых комплексах перенос заряда в действительности мал. По-видимому, увеличение интенсивности в системах с водородными связями обязано в основном взаимной поляризации молекул. К такому заключению пришел, например, Дирксен [21] при расчете интенсивности колебания ОН в димере воды. Согласно его расчету, А возрастает в 5,3 раза. Экспериментальных данных для изолированного димера нет. В условиях матрицы этот коэффициент равен 12 [22]. [c.22]

    Сопоставляя полученные результаты с величинами потенцна-.лов иоиизатгии и констант основности, видим, что сравнительная протоноакцепторная способность вторичных и третичных ароматических аминов согласуется с характером изменения их основности и ионизационного потенциала третичные амины являются более сильными акцепторами протона и донорами электрона, чем вторичные. Энергии же водородной связи, образуемой атомом азота алифатических аминов с фиксированным донором протона, у третичных аминов ниже, чем у вторичных, хотя электронодо-норная способность RsN, мерой которой может служить ионизационный потенциал или прочность комплексов донориоакцептор-ного типа с переносом заряда, выше, чем у R9NH. Подобная закономерность ранее наблюдалась только для рядов соединений, функциональный атом которых меняется по столбцу Периодической системы. Результат данной работы показывает, что при большом сходстве в электронном строении атома азота вторичных и третичных аминов их способность выступать в качестве доноров электрона и акцепторов протона меняется в противоположном направлении. Это означает, что перенос заряда не вносит заметного вклада в энергетику рассматриваемых комплексов с водородной связью. [c.36]

    Аналогичная картина наблюдается при окислении органических молекул на нанесенной пятиокиси ванадия, причем происходит образование поверхностных ионов 0 (хем.). Авторы считают 0 активной формой кислорода, ведущей процесс [83]. Этот вывод расходится с широко распространенным представлением о прямом участии ионов О " решетки в окислительных реакциях, проводимых на УдОз и на более сложных системах, включающих пятивалентный V (см. главу VI, стр. 298). Но это противоречие, вероятно, кажущееся. Можно представить себе реакции поверхностных 0 "-ионов с образованием промежуточного хемоадсорбированного 0"-иона. В одних случаях и условиях могут прямо участвовать ионы 0 , в других — 0 (хем.). Укажем также на бесспорное участие в ряде реакций кислотно-основного типа на окиси алюминия, на алюмосиликатных и на других подобных системах бренстедтовских протонных и льюисовских апротонных кислотных центров, действующих с образованием разных промежуточных положительно и отрицательно заряженных органических ионов. Из прочих активных промежуточных форм назовем я-комплексы, образуемые с катализаторами непредельными и ароматическими соединениями (и различные другие комплексы с переносом зарядов), и соединения, в которых водород, связанный с кислородом и азотом, образует водородные связи с активными центрами твердого тела. [c.56]

    Большинство реакций олефинов, ацетиленов и ароматических углеводородов осуществляется посредством электрофил ьной атаки на их я-электронные системы. В результате этого возник интерес к поведению этих соединений по отношению к кислотам и донорам водородной связи. В водных растворах кислот они либо не протонируются вовсе из-за слабости их основных свойств, либо претерпевают столь бурно протекающую реакцию, что очень трудно получить разумные значения рКа- Поэтому заманчиво сравнить их с другими слабыми основаниями с помощью смещений водородной связи или констант равновесия переноса заряда. Это сравнение, однако, может привести к ошибкам, если другие сравниваемые основания являются п-основаниями. Равновесия протонироваиия я-оснований, если они могут быть измерены, могут поставить нас перед другой проблемой — проблемой правильного выбора функции кислотности. [c.223]


Смотреть страницы где упоминается термин Водородные связи и системы с переносом заряда: [c.110]    [c.564]    [c.319]    [c.159]    [c.176]    [c.139]    [c.153]    [c.139]    [c.32]    [c.367]    [c.224]    [c.291]    [c.37]    [c.153]    [c.31]    [c.331]    [c.322]    [c.135]    [c.131]    [c.116]   
Смотреть главы в:

Применение длинноволновой ИК спектроскопии в химии -> Водородные связи и системы с переносом заряда




ПОИСК





Смотрите так же термины и статьи:

Водородные связи

Перенос заряда

Связь водородная, Водородная связь

Системы с водородными связями

связям системам



© 2025 chem21.info Реклама на сайте